|
isee
Posted 2023-10-6 20:16
Last edited by isee 2023-11-7 11:55源自知乎提问
证明: $\displaystyle\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}<\frac 1{\sqrt{2n+1}}$ .
可证\[\frac {2n-1}{2n}<\frac {2n}{2n+1}.\]故\[\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}<\frac 23\cdot \frac 45\cdot \frac 67\cdots \frac{2n}{2n+1},\]两端同乘$\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}$有\[\left(\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}\right)^2<\frac{(2n)!}{(2n+1)!}=\frac 1{2n+1},\]两端开方即是. |
|