Forgot password?
 Register account
View 283|Reply 2

[不等式] $\frac{1}{2}×\frac{3}{4}×\cdots×\frac{2n-1}{2n}<\frac{1}{\sqrt{2n+1}}$

[Copy link]

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2023-10-5 18:51 |Read mode
Last edited by kuing 2023-11-8 16:23求证:
\[\frac{1}{2}×\frac{3}{4}×\cdots×\frac{2n-1}{2n}<\frac{1}{\sqrt{2n+1}}.\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-10-5 20:19
Last edited by kuing 2023-11-8 16:34糖水不等式即可。

来试试加强式:
\[\sqrt{\frac1{2n+1}\cdot\frac2\pi}<\frac12\times\frac34\times\dots\times\frac{2n-1}{2n}<\sqrt{\frac{2n+2}{(2n+1)^2}\cdot\frac2\pi}.\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2023-10-6 20:16
Last edited by isee 2023-11-7 11:55源自知乎提问





证明: $\displaystyle\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}<\frac 1{\sqrt{2n+1}}$ .

可证\[\frac {2n-1}{2n}<\frac {2n}{2n+1}.\]故\[\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}<\frac 23\cdot \frac 45\cdot \frac 67\cdots \frac{2n}{2n+1},\]两端同乘$\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}$有\[\left(\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}\right)^2<\frac{(2n)!}{(2n+1)!}=\frac 1{2n+1},\]两端开方即是.
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-5-31 11:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit