Forgot password?
 Register account
View 366|Reply 2

[数论] $x^2+y^3=z^6$ Generalized Fermat Equation

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-11 03:31 |Read mode
Last edited by hbghlyj 2025-5-16 03:37$y^3=(z^3-x)(z^3+x)$
$\gcd(z,x)=1\implies\gcd(z^3-x,z^3+x)\mid2$
$z^3-x=a^3,z^3+x=b^3\implies a^3+b^3=2z^3$
$z^3-x=2a^3,z^3+x=4b^3\implies z^3+(-a)^3=2b^3$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-11 04:24
$a^3+b^3=2z^3$
$\gcd(a,b)=1\implies 2\nmid a,b$.
$u:=\frac{a+b}2,v:=\frac{a-b}2\implies u (u^2+3v^2)= z^3$
$\implies u = r^3,u^2+3v^2= s^3$
$(u+\sqrt{-3}v)(u-\sqrt{-3}v)= s^3$
NumberFieldClassNumber($\sqrt{-3}$)=1 Untitled.gif
$\implies u+\sqrt{-3}v=a_0^3,u-\sqrt{-3}v=b_0^3,a_0^3+b_0^3=2r^3,|r|<|z|$

接下来不知应该怎么做,已在MSE提问:math.stackexchange.com/questions/4896804/ques … olution-for-x2-y3-z6

暂无回復

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-11 05:52
H. Cohen, Number theory, Volume II: Analytic and modern tools, Graduate Texts in Mathematics 240, Springer, New York, 2007.
content.png

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit