Forgot password?
 Register account
View 238|Reply 1

[几何] CA⊥=CB,AD平分∠A,CD⊥AD∥BF,ΔABC外接圆切线交AD于H,FE⊥BH,交AB,AD于G,I,证:AI=GI

[Copy link]

13

Threads

4

Posts

116

Credits

Credits
116

Show all posts

zhiwen Posted 2023-11-4 10:03 |Read mode
Last edited by kuing 2023-11-8 14:29

如图,
已知\(\triangle ABC\)是等腰直角三角形,
且A,B,C皆在\(\bigcirc ABC\)上,
\(AD平分\angle BAC\),
且\(AD\perp CD\),
\(CD\perp BF\)垂足F,
过C作\(\bigcirc ABC\)的切线与AD交于H,
连结BH,
作\(BH\perp EF\)垂足E,
EF交AB于G,交AD于I,
连结GI,AI
求证\(AI=GI\)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-11-4 14:28
Last edited by kuing 2023-11-5 21:49由条件易知 `CH\px AB`,得 `\angle CHA=\angle BAH=\angle CAH`,所以 `CH=CA=CB`,即 `A`, `B`, `H` 在以 `C` 为圆心、`CA` 为半径的圆上,如下图。
QQ截图20231104142809.png
则 `\angle BHA=\angle BCA/2=45\du`,而 `BF\px HA`,所以 `\angle EBF=45\du`,因此 `\triangle EBF` 也是等腰直角三角形。

由 `\angle HCB=\angle CBA=45\du` 得 `\angle CBH=67.5\du`,则 `\angle FBG=180\du-\angle CBH-\angle CBA-\angle EBF=180\du-67.5\du-45\du-45\du=22.5\du`,进而 `\angle IGA=\angle FGB=\angle EFB-\angle FBG=45\du-22.5\du=22.5\du=\angle IAG`,所以 `IG=IA`。

Mobile version|Discuz Math Forum

2025-5-31 11:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit