Forgot password?
 Register account
View 312|Reply 3

[不等式] 带有绝对值的不等式

[Copy link]

3163

Threads

7940

Posts

610K

Credits

Credits
63798
QQ

Show all posts

hbghlyj Posted 2023-11-8 17:30 |Read mode
类似题
\[\frac{|x-y|}{1+|x|+|y|}\leq\frac{|x-z|}{1+|x|+|z|}+\frac{|z-y|}{1+|z|+|y|}\quad\text{for all $x,y,z∈ℝ$}\]

3163

Threads

7940

Posts

610K

Credits

Credits
63798
QQ

Show all posts

 Author| hbghlyj Posted 2023-11-8 23:07
证明必须要用到$\Bbb R$的性质。
因为对于一般的度量$d$,$d_1(x,y)=\frac{d(x,y)}{1+d(0,x)+d(0,y)}$不一定满足三角不等式。
反例:for $\mathbb R^2$ with $\ell_\infty$ norm: $x= (2,0)$, $y=(-1,-1)$, $z=(0, -2)$. Here $\nu(x,y)=0.75$ while $\nu(x,z)=0.4$ and $\nu(y,z) = 0.25$. So there can't be an elegant argument for general metric space... But I don't have any counterexamples for Euclidean norm. Of course, for Euclidean norm it suffices to deal with $\mathbb R^3$.

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-4-16 20:25
好久没做出来,顶一下
Wir müssen wissen, wir werden wissen.

3163

Threads

7940

Posts

610K

Credits

Credits
63798
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-17 02:25
Aluminiumor 发表于 2025-4-16 13:25
好久没做出来,顶一下
分段(-∞,a],[a,b],[b,c],[c,∞)验证≥0

Mobile version|Discuz Math Forum

2025-6-3 06:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit