Forgot password?
 Register account
View 243|Reply 1

[数列] 如何证明 $\displaystyle\lim_{n\to\infty}\cos \frac{a^n}{n^k} ≠ 0$ ?

[Copy link]

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2023-11-11 16:15 |Read mode
设 $a>1,k$ 是使得数列
$$p_n=\cos \frac{a^n}{n^k}$$
满足
$$p_n\neq0,\quad  n=1,2,\dots$$
的两个常数,证明
$$\lim_{n\to\infty}p_n\neq0.$$

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2023-11-11 16:24
我的思路是找到递推关系 $p_{n+1}=f(p_n),$ 然后假设极限存在且为 $L,$ 将递推关系两边同时取极限,得到 $L=f(L),$ 解得 $L\neq0,$ 这样就证明了数列 $\{p_n\}$ 极限不存在或存在但不为 $0.$

然而很难建立类似 $p_{n+1}=f(p_n)$ 或 $p_{n+2}=f(p_n)$ 这样的递推关系……

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit