Forgot password?
 Create new account
View 272|Reply 2

[几何] 垂径相关的证明题

[Copy link]

9

Threads

12

Posts

421

Credits

Credits
421

Show all posts

星奔川骛 Posted at 2023-11-28 10:16:35 |Read mode
Last edited by hbghlyj at 3 days ago已知:△ABC外接圆直径FG⊥BC于D,AE⊥FG于E。
求证:
`GE\cdot DF=(AB+AC)^2/4`;
`EF\cdot GD=(AB-AC)^2/4`。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2023-11-28 15:51:22
易知
\[DG=R-R\cos A,\]

\[DF=R+R\cos A,\]

\[DE=h_a=\frac{2S}a,\]
所以
\begin{align*}
GE\cdot DF&=(GD+DE)\cdot DF\\
&=DB\cdot DC+DE\cdot DF\\
&=\frac14a^2+\frac{2S}a\cdot(R+R\cos A)\\
&=\frac14a^2+\frac{bc}2(1+\cos A)\\
&=\frac14a^2+\frac{bc}2+\frac{b^2+c^2-a^2}4\\
&=\frac14(b+c)^2;
\end{align*}
另一个也类似:
\begin{align*}
EF\cdot GD&=(DF-DE)\cdot GD\\
&=DB\cdot DC-DE\cdot GD\\
&=\frac14a^2-\frac{2S}a\cdot(R-R\cos A)\\
&=\frac14a^2-\frac{bc}2(1-\cos A)\\
&=\frac14a^2-\frac{bc}2+\frac{b^2+c^2-a^2}4\\
&=\frac14(b-c)^2.
\end{align*}

Comment

写完才感觉以前好像写过类似嘀东西😳  Posted at 2023-11-28 16:59

手机版Mobile version|Leisure Math Forum

2025-4-22 01:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list