Forgot password
 Register account
View 313|Reply 6

[函数] 这个近似是怎么推导出来的?

[Copy link]

2

Threads

4

Posts

0

Reputation

Show all posts

CharlesCoburg posted 2023-12-18 12:44 |Read mode
;
截屏2023-12-18 下午12.45.28.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-12-18 14:37
\[
\ln\frac{n+1}n=\ln\left(1+\frac1n\right)\approx\frac1n\approx\frac2{2n+1}
\]
这样行吗

Comment

应该不行吧,至少说到 1/n^2 的价。  posted 2023-12-19 14:34

2

Threads

4

Posts

0

Reputation

Show all posts

original poster CharlesCoburg posted 2023-12-18 19:24
kuing 发表于 2023-12-18 14:37
\[
\ln\frac{n+1}n=\ln\left(1+\frac1n\right)\approx\frac1n\approx\frac2{2n+1}
\]
中间两项的那个近似是怎么的出来的?

$ \ln(1+\frac1n)\approx\frac1n $

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-12-18 21:56
CharlesCoburg 发表于 2023-12-18 19:24
中间两项的那个近似是怎么的出来的?

$ \ln(1+\frac1n)\approx\frac1n $
`\lim_{n\to\infty}(1+\frac1n)^n=e` 这是 e 的定义,取对数即可

107

Threads

224

Posts

1

Reputation

Show all posts

facebooker posted 2023-12-18 23:07
$\frac{x}{1+x}<\frac{x}{1+\frac{x}{2}}<\ln\left(1+x\right)$
数列里常用的一个放缩 还有别的 看你想要什么精度了。

2

Threads

4

Posts

0

Reputation

Show all posts

original poster CharlesCoburg posted 2023-12-19 12:32
kuing 发表于 2023-12-18 21:56
`\lim_{n\to\infty}(1+\frac1n)^n=e` 这是 e 的定义,取对数即可
OK🙏🙏

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:14 GMT+8

Powered by Discuz!

Processed in 0.016639 seconds, 32 queries