Forgot password?
 Create new account
View 140|Reply 3

角平分线BE,CD交于O,且OD+BD=OE+CE,是否是等腰。想找到反例。

[Copy link]

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2024-1-14 16:54:30 |Read mode
1434517o79vqa79932fvju.jpg
如图,以前存的一道题,没解出来,现在感觉命题不成立,想用Mathematica找到一个反例。
原命题:$\triangle ABC$中,$BE,CD$都是角平分线,两线交于$O$,若$OD+BD=OE+CE$,证明或否定$AB=AC$。

这个我设$OD=x_1,OE=x_2,BD=y_1,CE=y_2,\angle DOB=\alpha,\angle DBO=t_1,\angle ECO=t_2$,然后我用Mathematica求解方程,用的是FindInstance

  1. FindInstance[x1/Sin[t1]==y1/Sin[alpha]&&x2/Sin[t2]==y2/Sin[alpha]&&x1+y1==x2+y2&&2t1+2t2<Pi&&x1>0&&x2>0&&y1>0&&y2>0&&t1>0&&t2>0&&alpha>0]
Copy the Code


给出一个解是

\[\text{alpha}\to \frac{9}{11},\text{t1}\to \frac{46}{65},\text{t2}\to \frac{33}{118},\text{x1}\to 57,\text{x2}\to \frac{57 \sin \left(\frac{33}{118}\right) \left(1+\sin \left(\frac{9}{11}\right) \csc \left(\frac{46}{65}\right)\right)}{\sin \left(\frac{9}{11}\right)+\sin \left(\frac{33}{118}\right)},\text{y1}\to 57 \sin \left(\frac{9}{11}\right) \csc \left(\frac{46}{65}\right),\text{y2}\to \frac{57 \left(\sin \left(\frac{9}{11}\right)+\sin ^2\left(\frac{9}{11}\right) \csc \left(\frac{46}{65}\right)\right)}{\sin \left(\frac{9}{11}\right)+\sin \left(\frac{33}{118}\right)}\]

数值解是:
\[\text{alpha}\to 0.818182,\text{t1}\to 0.707692,\text{t2}\to 0.279661,\text{x1}\to 57.,\text{x2}\to 33.2023,\text{y1}\to 63.9989,\text{y2}\to 87.7966\]
但这个画出来感觉不太一样,是不是哪里弄错了?

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2024-1-14 17:15:52
`\alpha=t_1+t_2` 啊
这名字我喜欢

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2024-1-14 18:22:44
其实用角平分线长公式及角平分线定理就可以找到啦:
  1. wb = Sqrt[a c (a + b + c) (a + c - b)]/(a + c);
  2. wc = Sqrt[a b (a + b + c) (a + b - c)]/(a + b);
  3. BD = c*a/(a + b);
  4. CE = b*a/(a + c);
  5. OD = wc*BD/(BD + a);
  6. OE = wb*CE/(CE + a);
  7. FindInstance[
  8. OD + BD == OE + CE && a + b > c && b + c > a && c + a > b &&
  9.   b > c, {a, b, c}]
  10. N[%]
Copy the Code

输出:
\[\left\{\left\{a\to 1,b\to \frac{7}{2},c\to \text{Root}\left[16 \text{$\#$1}^4-80 \text{$\#$1}^3+380 \text{$\#$1}^2-2268 \text{$\#$1}+3969\&,1\right]\right\}\right\}\]
\[\{\{a\to 1.,b\to 3.5,c\to 2.55794\}\}\]
这就是反例,作图验证确实如此。
这名字我喜欢

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2024-1-14 18:38:48
色k 发表于 2024-1-14 18:22
其实用角平分线长公式及角平分线定理就可以找到啦:

输出:
原来如此,果然是我少写了条件。谢谢。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list