Forgot password
 Register account
View 181|Reply 1

[不等式] 3元n次不等式

[Copy link]

9

Threads

2

Posts

0

Reputation

Show all posts

jhsinutopia posted 2024-1-19 21:35 |Read mode
$a,b,c>0$, $a^2+b^2+c^2=1$, $n\in\mathbb{Z}, n>1$
Prove that $\frac{a}{1-a^n}+\frac{b}{1-b^n}+\frac{c}{1-c^n} \ge \frac{(n+1)^{1+\frac{1}{n}}}{n}$.

4

Threads

137

Posts

12

Reputation

Show all posts

Aluminiumor posted 2024-1-20 15:10
只需证
$$0<x<1,\frac{x}{1-x^n}\ge \frac{\left( n+1 \right) ^{1+\frac{1}{n}}}{n}x^2$$
即证
$$0<x<1,f\left( x \right) =x\left( 1-x^n \right) \le \frac{n}{\left( n+1 \right) ^{1+\frac{1}{n}}}$$

$$f'(x) =1-\left( n+1 \right) x^n$$

$$f\left( x \right) \le f\left( \frac{1}{\left( n+1 \right) ^{\frac{1}{n}}} \right) =\frac{1}{\left( n+1 \right) ^{\frac{1}{n}}}\cdot \frac{n}{n+1}=\frac{n}{\left( n+1 \right) ^{1+\frac{1}{n}}}$$
原不等式得证.
Wir müssen wissen, wir werden wissen.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:30 GMT+8

Powered by Discuz!

Processed in 0.063491 seconds, 24 queries