Forgot password
 Register account
View 169|Reply 1

[不等式] 四元不等式

[Copy link]

9

Threads

2

Posts

0

Reputation

Show all posts

jhsinutopia posted 2024-1-22 14:23 |Read mode
$0<a\le b\le c\le d<2$
Prove that $5(ab^4+bc^4+cd^4+16d)<5(b^5+c^5+d^5+16a)+128$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-1-22 15:41
干脆将它变成五元吧:令 `e=2`,则不等式可以写成:

若 `0<a\leqslant b\leqslant c\leqslant d<e`,则
\[5(ab^4+bc^4+cd^4+de^4)<5(b^5+c^5+d^5+ae^4)+4e^5,\]
事实上,上式还可以加强为
\[5(ab^4+bc^4+cd^4+de^4)<b^5+5(c^5+d^5+ae^4)+4e^5,\]
证明也是简单的,条件有
\[5ab^4<5ae^4,\]
由均值有
\[5bc^4=5bcccc\leqslant b^5+4c^5,\]
同理
\begin{align*}
5cd^4&\leqslant c^5+4d^5,\\
5de^4&\leqslant d^5+4e^5,
\end{align*}
以上四式相加即得证。

(完全看穿命题手法并觉得很没意思😌……

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:16 GMT+8

Powered by Discuz!

Processed in 0.011875 seconds, 22 queries