Forgot password?
 Register account
View 305|Reply 3

[函数] 指数型和函数不等式的证明

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2024-1-28 18:14 |Read mode
Last edited by kuing 2024-1-28 18:41求问各位,能直接放吗?
若 $x<-1$, 求证: $2^{\frac{1}{x}}+2^x<1$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2024-1-28 18:43
想起了更一般的这帖:
forum.php?mod=viewthread&tid=7861
(似乎还未解决)

Comment

看来是不容易。  Posted 2024-1-28 19:08

4

Threads

28

Posts

815

Credits

Credits
815

Show all posts

ic_Mivoya Posted 2024-1-29 20:22
即需证 $2^{-x}+2^{-\frac1x}<1~(x>1)$.



考虑局部不等式: $2^x\ge x^{2\ln 2}+1~(x>0)$.

要证明其成立,只需证 $\ln(2^x-1)\ge 2\ln2\ln x$.

命 $f(x)=\ln(2^x-1)-2\ln2\ln x$, 则

$$\begin{aligned}
f'(x)&=\dfrac{2^x\ln2}{2^x-1}-\dfrac{2\ln2}x\\
&=\dfrac{2^x\ln 2(x-2+2^{1-x})}{x(2^x-1)}
\end{aligned}$$

显然 $g(x)=x-2+2^{1-x}$ 为下凸函数, 且 $g(0)=g(1)=0$.

因此当 $0<x<1$ 时 $g(x)<0$, 当 $x>1$ 时 $g(x)>0$.

故 $f(x)\ge f(1)=0$, 这就是要证的.



至此得到 $2^x\ge x^{2\ln 2}+1~(x>0)$, 取等条件为 $x=1$.

则立即就有 $2^{-x}+2^{-\frac1x}<\dfrac1{x^{2\ln2}+1}+\dfrac1{x^{-2\ln2}+1}=1.$ 证毕.

Mobile version|Discuz Math Forum

2025-5-31 10:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit