Forgot password
 Register account
View 273|Reply 6

[函数] 三角恒等变换解方程

[Copy link]

3

Threads

0

Posts

0

Reputation

Show all posts

virus posted 2024-1-29 21:00 from mobile |Read mode
Last edited by virus 2024-1-29 21:13试解出满足如下方程
\[\sinx(5+3\sin x-8\cos x)=3\cos^2x\]的所有实数$x$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-1-29 23:07
Last edited by kuing 2024-1-30 16:38\begin{align*}
&\iff5\sin x+3\sin^2x-3\cos^2x-8\sin x\cos x=0\\
&\iff5\sin x-3\cos2x-4\sin2x=0,
\end{align*}
记 `a=3x/2`, `b=x/2`,则
\begin{align*}
5\sin x-3\cos2x-4\sin2x&=5\sin(a-b)-3\cos(a+b)-4\sin(a+b)\\
&=\sin a\cos b-9\cos a\sin b-3\cos a\cos b+3\sin a\sin b\\
&=(\sin a-3\cos a)(\cos b+3\sin b),
\end{align*}
由此得到
\[\tan\frac{3x}2=3~\text{或}~\tan\frac x2=-\frac13,\]
设 `k\inZ`,前者的解为
\[x=\frac23(\arctan3+k\pi);\]
后者的解为
\[x=2\left(-\arctan\frac13+k\pi\right),\]
还可以化简一点,由两倍角公式有
\[\tan\left(2\arctan\frac13\right)=\frac{2\cdot\frac13}{1-\frac1{3^2}}=\frac34\riff2\arctan\frac13=\arctan\frac34,\]
所以后者的解化简为
\[x=-\arctan\frac34+2k\pi.\]

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-2-3 00:37 from mobile
k神,为啥不直接上辅助角?
除了不懂,就是装懂

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-2-3 00:44
睡神 发表于 2024-2-3 00:37
k神,为啥不直接上辅助角?
哦,我没注意到 3 4 5 😅,你的意思我懂啦😋

PS、long time no see 😊

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-2-3 12:42 from mobile
老了,题做不来了,就很少冒泡了

Comment

你还是那么谦虚🙄  posted 2024-2-3 13:56
谦虚条毛线,实力不允许啊~  posted 2024-2-3 18:01
除了不懂,就是装懂

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:09 GMT+8

Powered by Discuz!

Processed in 0.040974 seconds, 32 queries