Forgot password?
 Register account
View 193|Reply 1

[几何] 来自QQ网友:a^2=b+c, B=2C, 证 b>2/3

[Copy link]

682

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2024-2-10 21:15 |Read mode
零定义 2024/2/4 19:04:37
k神,在三角形中,a^2=b+c,B=2C,证明:b>2/3
这个题有更好的方法证明不

kuing 2024/2/4 23:53:56
发论坛上吧,我暂时没有撸题欲

零定义 2024/2/5 0:07:57
不会弄代码
证:由 `B=2C` 得 `b>c` 且 `\sin B=2\sin C\cos C<2\sin C`,因此 `b<2c`。

又熟知 `B=2C\iff b^2=c(a+c)`,得到 `a=(b^2-c^2)/c`,因此
\[b=\frac{b(b+c)}{a^2}=\frac{b(b+c)c^2}{(b^2-c^2)^2}=\frac{bc^2}{(b+c)(b-c)^2},\]
到这里可以换元求导啥的求出范围,不过既然原题只要证它 `>2/3`,那直接作差好了
\[b-\frac23=\frac{(2c-b)(2b^2+2bc-c^2)}{3(b-c)^2(b+c)}>0.\]

Comment

这变形确实挺巧妙的,没想到…一直在搞边化角😔  posted 2024-2-14 23:30

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:53 GMT+8

Powered by Discuz!

Processed in 0.020162 second(s), 22 queries

× Quick Reply To Top Edit