Forgot password?
 Register account
View 200|Reply 3

[几何] 恰好分成2條曲線

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-2-10 21:53 |Read mode
\[
1(x^{4}+y^{4})-2(x^{2}+y^{2})+3x^{2}y^{2}+k=0
\]
當$k\approx0.8$時,曲線能恰好分成2條曲線
$k$的精确值是?

k=0.8
wolframalpha.com/input?i=contourplot x^4 + 3  … - 2 (x^2 + y^2)+.8=0

k=0.7999
wolframalpha.com/input?i=contourplot x^4 + 3  …  (x^2 + y^2)+.7999=0

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-2-10 22:01
懷疑就是$k=0.8$,WolframAlpha、Asmptote畫的圖不凖,0.8時還有缺口。
代入$y=x$,$-4 x^2 + 5 x^4$ 的最小值$=-0.8$.

如何使Asmptote畫出更精確的圖?在contour参數中加上nx=200

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2024-2-10 22:10
k=0.8 时原式分解为
\[\left(x^2+\frac{3+\sqrt5}2y^2-1-\frac1{\sqrt5}\right)\left(x^2+\frac{3-\sqrt5}2y^2-1+\frac1{\sqrt5}\right)=0\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-2-10 22:11
kuing 发表于 2024-2-10 14:10
k=0.8 时原式分解为
\[\left(x^2+\frac{3+\sqrt5}2y^2-1-\frac1{\sqrt5}\right)\left(x^2+\frac{3-\sqrt5}2 ...
怎麼看出的呢

Mobile version|Discuz Math Forum

2025-5-31 10:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit