Forgot password?
 Register account
View 173|Reply 0

[几何] $O$是正$\triangle ABC$中心,$ABD,ACD$内切圆为$\odot I_1,\odot I_2$,求外公切线长

[Copy link]

411

Threads

1634

Posts

14

Reputation

Show all posts

abababa posted 2024-2-20 17:58 |Read mode

正$\triangle ABC$中心为$O$,$D$在弧$BC$上,$\triangle ABD,\triangle ACD$的内切圆分别是$\odot I_1,\odot I_2$,求证两圆外公切线长为$AB-\frac{AD}{2}$。

这题我设了$\angle BAD=x$,然后全用$x$的三角函数代入的,求出两圆半径$r_1,r_2$,连心线长$I_1I_2$是在$\triangle I_1I_2D$中用余弦定理算的。最后外公切线长的平方是$EF^2=3r_1^2-2r_1r_2+3r_2^2$,再代入$r_1=R(\cos(60^{\circ}-x)-\frac{1}{2}),r_2=R(\cos x-\frac{1}{2})$(用了$\frac{r}{R+r}=\cos A+\cos B+\cos C$这个结论在两个三角形里求出来的)就弄出来了。

有没有更简捷一点的方法来算这个公切线长?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:53 GMT+8

Powered by Discuz!

Processed in 0.016194 second(s), 21 queries

× Quick Reply To Top Edit