Forgot password
 Register account
View 204|Reply 1

[不等式] 一个三元不等式

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2024-2-24 11:20 |Read mode
已知$a,b,c$为正实数,且$k\geqslant 2$,求证:$(a^k+2)(b^k+2)(c^k+2)\geqslant 3^{3-k}(a+b+c)^k$。

另外,这个不等式能不能推广到$n$元?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-2-24 17:55
当年我在《数学空间》2011 年第 2 期 P.37~38 曾得到如下推广:
那将 2 次方改为 `k\geqslant2` 次方(变量改为正数)时,由上述结论再加上幂平均,就有
\begin{align*}
\prod_{i=1}^n(x_i^k+n-1)&=\prod_{i=1}^n\Bigl(\bigl(x_i^{k/2}\bigr)^2+n-1\Bigr)\\
&\geqslant n^{n-2}\left(\sum_{i=1}^nx_i^{k/2}\right)^2\\
&=n^n\left(\left(\frac1n\sum_{i=1}^nx_i^{k/2}\right)^{2/k}\right)^k\\
&\geqslant n^n\left(\frac1n\sum_{i=1}^nx_i\right)^k\\
&=n^{n-k}(x_1+x_2+\cdots+x_n)^k.
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:27 GMT+8

Powered by Discuz!

Processed in 0.011848 seconds, 22 queries