|
維基百科說
`{\displaystyle {\sqrt {|D|}}\geq \left({\frac {\pi }{4}}\right)^{r_{2}}{\frac {n^{n}}{n!}}\geq \left({\frac {\pi }{4}}\right)^{n/2}{\frac {n^{n}}{n!}}\ .}`
For n at least 2, it is easy to show that the lower bound is greater than 1 如何證明它說的$$\forall n\geqslant2,\ \left({\frac {\pi }{4}}\right)^{n/2}{\frac {n^{n}}{n!}}>1$$呢? |
|