Forgot password?
 Register account
View 293|Reply 1

[不等式] $∑H(n-1)/n^2$和$∑1/n^3$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-2-26 07:21 |Read mode
Last edited by hbghlyj 2024-2-26 19:36$N\ge2,$ $$ \sum_{n=2}^N \frac{1}{n^2} \sum_{m=1}^{n-1} \frac{1}{m}\leqslant\sum_{n=1}^N \frac{1}{n^{3}} . $$ 驗證:wolframalpha.com/input?i=Accumulate[Table[N[1 … 2], {n, 2, 1000}]]+1
  1. ListPlot[
  2. 1 + Accumulate[
  3. Table[1/n^3 - N[HarmonicNumber[n - 1]/n^2], {n, 2, 1000}]]]
Copy the Code
.png

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-2-27 03:37
If $x$ is any complex number not equal to a positive integer, then
$$
\sum_{n=1}^{\infty} \frac{1}{n(n-x)} \sum_{m=1}^{n-1} \frac{1}{m-x}=\sum_{n=1}^{\infty} \frac{1}{n^{2}(n-x)} .
$$
Proof. Fix $x \in \mathbf{C} \backslash \mathbf{Z}^{+}$. Let $S$ denote the left hand side. By partial fractions,
$$
\begin{aligned}
S &=\sum_{n=1}^{\infty} \sum_{m=1}^{n-1}\left(\frac{1}{n(n-m)(m-x)}-\frac{1}{n(n-m)(n-x)}\right) \\
&=\sum_{m=1}^{\infty} \frac{1}{m-x} \sum_{n=m+1}^{\infty} \frac{1}{n(n-m)}-\sum_{n=1}^{\infty} \frac{1}{n(n-x)} \sum_{m=1}^{n-1} \frac{1}{n-m} \\
&=\sum_{m=1}^{\infty} \frac{1}{m(m-x)} \sum_{n=m+1}^{\infty}\left(\frac{1}{n-m}-\frac{1}{n}\right)-\sum_{n=1}^{\infty} \frac{1}{n(n-x)} \sum_{m=1}^{n-1} \frac{1}{m}
\end{aligned}
$$
Now for fixed $m \in \mathbf{Z}^{+}$,
$$
\begin{aligned}
\sum_{n=m+1}^{\infty}\left(\frac{1}{n-m}-\frac{1}{n}\right) &=\lim _{N \rightarrow \infty} \sum_{n=m+1}^{N}\left(\frac{1}{n-m}-\frac{1}{n}\right)=\sum_{n=1}^{m} \frac{1}{n}-\lim _{N \rightarrow \infty} \sum_{n=1}^{m} \frac{1}{N-n+1} \\
&=\sum_{n=1}^{m} \frac{1}{n}
\end{aligned}
$$
since $m$ is fixed. Therefore, we have
$$
\begin{aligned}
S &=\sum_{m=1}^{\infty} \frac{1}{m(m-x)} \sum_{n=1}^{m} \frac{1}{n}-\sum_{n=1}^{\infty} \frac{1}{n(n-x)} \sum_{m=1}^{n-1} \frac{1}{m}=\sum_{n=1}^{\infty} \frac{1}{n(n-x)}\left(\sum_{m=1}^{n} \frac{1}{m}-\sum_{m=1}^{n-1} \frac{1}{m}\right) \\
&=\sum_{n=1}^{\infty} \frac{1}{n^{2}(n-x)}
\end{aligned}
$$
$□$

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit