Forgot password
 Register account
View 202|Reply 1

[几何] 2维 LatticeReduce

[Copy link]

3219

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-2-29 23:35 |Read mode
如何證明
給定一个平行四邊形平移生成的全部格点,存在滿足條件1~4的平行四邊形,平移生成的全部格点相同。


平行四边形的兩條邊$ω_1, ω_2\inC$之比$\tau=\frac{ω_2}{ω_1}\inC$滿足
  • $-\frac{1}{2}<\operatorname{Re}(\tau) \leq \frac{1}{2}$
  • $\operatorname{Im}(\tau)>0$
  • $|\tau| \geq 1$
  • $\operatorname{Re}(\tau) \geq 0$ if $|\tau|=1$

3219

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-3-2 01:46
把$\tau$寫成$w_1/w_2,\;w_1=x_1+iy_1,\;w_2=x_2+iy_2$,條件變成
  • $-\frac{1}{2}<\frac{x_1x_2+y_1y_2}{x_1^2+y_1^2}\leq \frac{1}{2}$
  • $x_2y_1-x_1y_2>0$
  • $x_1^2+y_1^2 \geq x_2^2+y_2^2$
  • $x_1x_2+y_1y_2 \geq 0$ if $x_1^2+y_1^2=x_2^2+y_2^2$

forum.php?mod=viewthread&tid=12042的算法,
條件1相當於u.dot(v)/v.normSq()被round到0,即q為0

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:08 GMT+8

Powered by Discuz!

Processed in 0.013509 seconds, 22 queries