|
Author |
hbghlyj
Posted 2024-3-9 20:12
又找到artofproblemsolving.com/community/c3016h12981 … ixtilinear_incircles
4. $\angle BAT = \angle CAE$, and equivalent angles.
Proof.
$\sqrt{bc}$ inversion swaps the $A$-excircle and $\omega_A$.
5. $\angle ATB = \angle CTD$, and equivalent angles.
Proof.
Equivalently, $TD$ meets $\Gamma$ at the point $A'$ so that $AA'CB$ is an isosceles trapezium. But a reflection in the perpendicular bisector of $\overline{BC}$ takes the $A$-Nagel cevian to $TD$. $T$是 $\omega_A$ 与 $\odot ABC$ 的切点,$E$是$A$-excircle与BC的切点,
而“$\sqrt{bc}$ inversion swaps the $A$-excircle and $\omega_A$.”
并且“$\sqrt{bc}$ inversion swaps $\odot ABC$ and $BC$.”
所以$\sqrt{bc}$ inversion swaps $T$ and $E$.
4. $\angle BAT = \angle CAE$我知道这个是因为$T$的反演像仍在$AT$上,再关于$\angle BAC$角平分线对称到$E$,所以$AT,AE$是等角线。
5. $\angle ATB = \angle CTD$这个还是不懂啊…… |
|