Forgot password?
 Register account
View 266|Reply 0

[不等式] $\abs{E_p(z)- 1} \le \abs z^{p + 1}$

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2024-3-9 19:19 |Read mode
$p\inN^+$,$z\inC$,$E_p(z) = (1 - z) \exp\left(z + \dfrac {z^2} 2 + \cdots + \dfrac {z^p} p\right)$,
如何证明这里的Another bound
Let $\abs z \le 1$. Then:
$$\abs{E_p(z) - 1} \le \abs z^{p + 1}$$
This theorem requires a proof.
150px-Thinker[1].gif

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 07:01 GMT+8

Powered by Discuz!

Processed in 0.017174 second(s), 24 queries

× Quick Reply To Top Edit