Forgot password?
 Register account
View 194|Reply 2

[几何] 内角相等的空间四边形

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-3-12 06:38 |Read mode
如果 $A,B,C,D$ 是 $\Bbb R^3$ 中的四个不同点,满足 $\angle ABC=\angle BCD=\angle CDA=\angle DAB$,
那么命题 $|AB|=|CD|\lor|BC|=|DA|$ 一定为真吗?(符号$\lor$表示“或”)

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-12 06:44
好的,我用余弦定理证明了“要么 a=c,要么 b=d”。通过解 c、d 的方程
$$a^2-2 a b \cos (t)+b^2=c^2-2 c d \cos (t)+d^2$$
$$a^2-2 a d \cos (t)+d^2=b^2-2 b c \cos (t)+c^2$$
我们得到:
$$(c,d)=(-a,-b),(a,b),(a,2 a \cos (t)-b),(2 b \cos (t)-a,b)$$
因$-a<0$,舍去第一组解,
$$(c,d)=(a,b),(a,2 a \cos (t)-b),(2 b \cos (t)-a,b)$$
在三种情况下,要么 $a=c$,要么 $b=d$.
  1. In[]:= Solve[{a^2+b^2-2 a b Cos[t]==c^2+d^2-2 c d Cos[t],a^2+d^2-2 a d Cos[t]==b^2+c^2-2 b c Cos[t]},{c,d}]
  2. Out[]= {{c->-a,d->-b},{c->a,d->b},{c->a,d->-b+2 a Cos[t]},{c->-a+2 b Cos[t],d->b}}
Copy the Code

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-12 06:47
补充解方程的过程:
两式相加,
$$2a^2-2 a b \cos (t)-2 a d \cos (t)=2c^2-2 c d \cos (t)-2 b c \cos (t)$$
解得\[d= \frac{a-b \cos (t)+c}{\cos(t)}\]
代入方程消去$d$得一个关于$c$的三次方程,分解得
\[(a-c) (a+c) (\cos (t)-1) (\cos (t)+1) (a-2 b \cos (t)+c)=0\]
所以$c=a$或$c=2b\cos(t)-a$

Mobile version|Discuz Math Forum

2025-5-31 11:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit