Forgot password?
 Create new account
View 4171|Reply 13

[不等式] 发个对你们来说很水的水题

[Copy link]

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted at 2013-8-21 23:27:37 |Read mode
来自不等式群的题~
GUK[LN@9P(4MXH9`BA%)[3T.jpg
我的烂思路:
ZGCJSW)1TG~H)O~$)}%[J$R.jpg
后面的杯具了...
放缩?切线?还是...
各位大神,快来秒吧!!!
睡自己的觉,让别人说去...

7

Threads

128

Posts

879

Credits

Credits
879

Show all posts

第一章 Posted at 2013-8-21 23:39:37
对应项?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-21 23:40:44
自己做不出然后又断言水题……啥逻辑……

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

 Author| 零定义 Posted at 2013-8-22 00:14:47
回复 3# kuing
木系写着对你们来说么…对俺来说就…
睡自己的觉,让别人说去...

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-22 00:18:10
回复 4# 零定义
不会做就无法判断深浅,不论是对谁……

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-22 16:18:32
先证明对任意 $n\in\mbb N^+$ 有
\[\frac{2^n-1}{3^n-2^n}\leqslant \left( \frac23 \right)^{n-1},\]
上式去分母整理等价于
\[ 6^n+2\cdot 3^n\geqslant 3\cdot 4^n,\]
由琴生不等式或加权幂平均不等式,有
\[\frac13\cdot 6^n+\frac23\cdot 3^n\geqslant \left( \frac13\cdot 6+\frac23\cdot 3 \right)^n=4^n,\]
即成立,故
\[\sum_{k=1}^n\frac{2^k-1}{3^k-2^k}\leqslant \sum_{k=1}^n\left( \frac23 \right)^{k-1}=3-3\cdot \left( \frac23 \right)^n,\]
易证对任意 $n\in\mbb N^+$ 有
\[4-\frac3n\geqslant 3-3\cdot \left( \frac23 \right)^n,\]
故原不等式得证。

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

 Author| 零定义 Posted at 2013-8-22 17:15:33
回复 6# kuing
NB!哎…我又放缩错方向了…
睡自己的觉,让别人说去...

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-22 17:18:42
回复 7# 零定义

你想证的那个应该也是成立的,不过不太好证……

1

Threads

22

Posts

319

Credits

Credits
319

Show all posts

地狱的死灵 Posted at 2013-8-22 17:31:11
回复 6# kuing



    令$f(x) = x^n ,g(x) = (x + 1)^n ,x \in [1,2]$
由柯西中值定理,存在$x_0  \in (1,2)$使得
$(\frac23)^{n-1}  \ge \frac{nx_0^{n - 1} }{n(x_0  + 1)^{n - 1} } = \frac{f'(x_0 )}{g'(x_0 )} = \frac{f(2) - f(1)}{g(2) - g(1)} = \frac{2^n  - 1}{3^n  - 2^n }$

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

 Author| 零定义 Posted at 2013-8-22 17:33:33
回复 8# kuing
用几何画板验证是成立的,求证
睡自己的觉,让别人说去...

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-8-22 17:36:34
回复 9# 地狱的死灵

圆奶乳齿,好证法

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-8-22 20:37:30
这样看来,此题不简单啊

地狱的死灵 向来犀利

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

 Author| 零定义 Posted at 2013-8-22 21:51:25
回复 12# isee
嗯嗯,严重同意!你们一向以来都不是一般的NB
睡自己的觉,让别人说去...

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-8-23 17:27:02
犀利死灵!

手机版Mobile version|Leisure Math Forum

2025-4-21 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list