|
本帖最后由 hbghlyj 于 2024-6-12 16:05 编辑 考虑与3直线相交的第四直线,然后第四条直线形成曲面,这是二次曲面
math.stackexchange.com/questions/1204689/there-is-a-unique-quadric-through-three-disjoint-lines
Theodore Shifrin - Abstract Algebra: A Geometric Approach (page 337)
Proposition 4.10. Let $\ell_1, \ell_2, \ell_3$ be lines in $\mathbb{P}^3$ in general position. Then there is a unique quadric surface containing them all.
Proof. Let's start with a specific case. Suppose
\[\tag∗
\begin{aligned}
& \ell_1=\left\{x_0=x_1=0\right\} \\
& \ell_2=\left\{x_2=x_3=0\right\} \\
& \ell_3=\left\{x_0=x_2, x_1=x_3\right\} .
\end{aligned}
\]
As in the proof of Lemma 4.8, for each point $P_3 \in \ell_3$, there is a unique line through $P_3$ intersecting both $\ell_1$ and $\ell_2$; we now calculate this line explicitly. Let $P_3=[\alpha, \beta, \alpha, \beta]$. The plane spanned by $P_3$ and $\ell_2$ consists of all points of the form $[*, *, \alpha, \beta]$ (where $*$ denotes an arbitrary real number), and so it intersects $\ell_1$ in the point $P_1=$ $[0,0, \alpha, \beta]$. Now the line $\ell$ through $P_1$ and $P_3$ is given by
\[
\overleftrightarrow{P_1 P_3}=\{[s(0,0, \alpha, \beta)+t(\alpha, \beta, \alpha, \beta)]: s, t \in \mathbb{R} \text { not both zero }\} .
\]
We can rewrite this explicitly as follows:
\[
\begin{aligned}
& x_0=t \alpha \\
& x_1=t \beta \\
& x_2=(s+t) \alpha \\
& x_3=(s+t) \beta .
\end{aligned}
\]
Note that every point on this line satisfies the equation
\[\tag{∗∗}\label{segre}
x_0 x_3=x_1 x_2 .
\]
And, conversely, every point on the surface $(* *)$ can be expressed in the form $(*)$ for some values of $s, t, \alpha$, and $\beta$. (For example, if $x_0 \neq 0$, then we may take $x_0=1=\alpha t, x_1=\beta t, x_2=(s+t) \alpha=1+s \alpha$, and solve for $x_3: x_3=x_1 x_2 / x_0=t \beta(1+s \alpha)=t \beta+(\alpha t)(s \beta)=(s+t) \beta$, as required. If $x_0=0$, then either $x_1=0$ or $x_2=0$ : if $x_0=x_1=0$, then set $t=0$, and solve $[\alpha, \beta]=\left[x_2, x_3\right]$; if $x_0=x_2=0$, then set $\alpha=0, \beta=1$, and solve $[t, s+t]=\left[x_1, x_3\right]$.) |
|