Forgot password?
 Register account
View 407|Reply 5

[数论] "近似费马方程" $x^3 = y^3 + z^3±1$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-3-13 20:24 |Read mode
这个帖子讨论了Fermat Equation $x^3 = y^3 + z^3 $

近似费马方程 $x^3 = y^3 + z^3$ 加或减 1
简单地执行验证:
\begin{align*}
6^3 + 8^3 + 1
      & = 216 + 512 + 1\\
&= 729\\
& = 9^3
\end{align*}


\begin{align*}
64^3 + 94^3 - 1
&= 262 \, 144 + 830 \, 584 - 1
\\&= 1 \, 092 \, 727\\&= 103^3
\end{align*}还有其他解吗

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-3-13 21:58
Last edited by 睡神 2024-3-13 22:19应该有无穷多组解,比如$x^3=y^3+z^3+1,0<x<1000$还有:{144, 71, 138},{172,135,138},{505,372,426},{577,426,486},{729,242,720},{904,566,823},当然$y$与$z$对调也是一组解
$x^3=y^3+z^3-1$这个更明显,$x=y,z=1$时就有无穷多组解
除了不懂,就是装懂

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-13 22:09
睡神 发表于 2024-3-13 13:58
还有:{144, 71, 138},{172,135,138},{505,372,426},{577,426,486},{729,242,720},{904,566,823},
如何证明有无穷多个解满足x,y,z>1

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-3-14 01:33
Last edited by 睡神 2024-3-14 11:54
hbghlyj 发表于 2024-3-13 22:09
如何证明有无穷多个解满足x,y,z>1
证明无穷解不难,找出所有的解就真的难...

令$x=1+t(y+z),t\in (0,1)$,代入$x^3=y^3+z^3+1$化简得:

$t(y+z)[3+3t(y+z)+t^2(y+z)^2]=(y+z)(y^2-yz+z^2)=\dfrac{1}{4}(y+z)[(y+z)^2+3(y-z)^2]$

约去$y+z$得:$4t[3+3t(y+z)+t^2(y+z)^2]=(y+z)^2+3(y-z)^2$

令$u=y+z,v=y-z$,则$4t(3+3tu+t^2u^2)=u^2+3v^2$

取$t=\dfrac{12}{19}$,则$(53u+16416)^2-1090581v^2=266729904$

易知$12|u,12|v$,令$u=12a,v=12b$          (这一步和下一步考虑错了,待更改)

化简得:$(53a+1368)^2-1090581b^2=1852291$

后面就得到一个Pell方程

我取$t=\dfrac{12}{19}$的原因,在于发现{505,372,426}和{577,426,486}的$t$都是$\dfrac{12}{19}$
除了不懂,就是装懂

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2024-3-14 22:19
hbghlyj 发表于 2024-3-13 22:09
如何证明有无穷多个解满足x,y,z>1
好像拉马努金有公式解
(1 - 9 t^3)^3 + (9 t^4)^3 + (3 t - 9 t^4)^3 // Factor

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2024-3-15 17:37
0.png
1.png
2.png

Mobile version|Discuz Math Forum

2025-5-31 10:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit