Forgot password?
 Register account
View 174|Reply 1

[几何] billiard table 和 Lissajous曲線的關係

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-3-16 23:30 |Read mode
Multiple Points on Lissajous's Curves in Two and Three Dimensions FIG. 2. 第4页
和lissajous曲線的關係:
\begin{aligned}
& x=\cos \frac{\pi}{\alpha}\left(t+t_1\right), \\
& y=\cos \frac{\pi}{\beta}\left(t+t_2\right),
\end{aligned}作代换$\begin{aligned}
u&=\frac{\alpha}{\pi} \cos ^{-1} x, \\
v&=\frac{\beta}{\pi} \cos ^{-1} y,
\end{aligned}$后变成 billiard table 轨迹

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-16 23:32
mathcurve.com關於lissajous曲線的結論:

In the case where the curve can be described in both directions, then there are $\dfrac{(p-1)(q-1)}2$ double points.
billiard table 从角点开始45°发球的結論相同。

Mobile version|Discuz Math Forum

2025-5-31 11:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit