Forgot password
 Register account
View 170|Reply 1

[几何] 椭圆恰有四个顶点

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-3-21 19:37 |Read mode
hbghlyj 发表于 2024-3-21 11:04
沈一兵-整体微分几何初步 2009 §1.3凸闭曲线 第69页:
...平面上椭圆恰有四个顶点
如何证明椭圆恰有四个顶点

这一章的习题6、求平面上椭圆 $x(t)=(a \cos t, b \sin t)$ 的顶点坐标, $0 \leqslant t \leqslant 2 \pi, 0<a<b$ 为常数.

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-3-21 19:40
根据前帖计算,椭圆的曲率为$$\kappa=\frac{ab}{(a^2\sin^2(t)+b^2\cos^2(t))^{3/2}} $$
则$$\dot\kappa=0\Leftrightarrow\frac{d}{dt}(a^2\sin^2(t)+b^2\cos^2(t))=0$$
而$a^2\sin^2(t)+b^2\cos^2(t)=(a^2-b^2)\sin^2(t)+b^2$,所以
$$\dot\kappa=0\Leftrightarrow\frac{d}{dt}\sin^2(t)=0$$
即$$2\sin(t)\cos(t)=0$$
因此点$(a\cos t,b\sin t)$为顶点当且仅当$\sin(t)=0$或$\cos(t)=0$。显然这样的点有4个。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:04 GMT+8

Powered by Discuz!

Processed in 0.012198 seconds, 22 queries