Forgot password?
 Register account
View 243|Reply 1

[几何] 椭圆恰有四个顶点

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-3-21 19:37 |Read mode
hbghlyj 发表于 2024-3-21 11:04
沈一兵-整体微分几何初步 2009 §1.3凸闭曲线 第69页:
...平面上椭圆恰有四个顶点
如何证明椭圆恰有四个顶点

这一章的习题6、求平面上椭圆 $x(t)=(a \cos t, b \sin t)$ 的顶点坐标, $0 \leqslant t \leqslant 2 \pi, 0<a<b$ 为常数.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-21 19:40
根据前帖计算,椭圆的曲率为$$\kappa=\frac{ab}{(a^2\sin^2(t)+b^2\cos^2(t))^{3/2}} $$
则$$\dot\kappa=0\Leftrightarrow\frac{d}{dt}(a^2\sin^2(t)+b^2\cos^2(t))=0$$
而$a^2\sin^2(t)+b^2\cos^2(t)=(a^2-b^2)\sin^2(t)+b^2$,所以
$$\dot\kappa=0\Leftrightarrow\frac{d}{dt}\sin^2(t)=0$$
即$$2\sin(t)\cos(t)=0$$
因此点$(a\cos t,b\sin t)$为顶点当且仅当$\sin(t)=0$或$\cos(t)=0$。显然这样的点有4个。

Mobile version|Discuz Math Forum

2025-5-31 11:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit