Forgot password?
 Register account
View 253|Reply 3

[几何] 高维球具有“外多内少”的特点

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2024-3-23 02:16 |Read mode
Examples
In higher dimensions, it is no longer true that, for example, \(W^{1,1}\) contains only continuous functions. For example, \(|x|^{-1} \in W^{1,1}(\mathbb{B}^3)\) where \(\mathbb{B}^3\) is the unit ball in three dimensions. For \(k > n/p\), the space \(W^{k,p}(\Omega)\) will contain only continuous functions, but for which \(k\) this is already true depends both on \(p\) and on the dimension. For example, as can be easily checked using spherical polar coordinates for the function \(f : \mathbb{B}^n \to \Bbb R \cup \{\infty \}\) defined on the $n$-dimensional ball we have:
\[f(x) = | x |^{-\alpha} \in W^{k,p}(\mathbb{B}^n) \Longleftrightarrow \alpha < \tfrac{n}{p} - k.\]
Intuitively, the blow-up of $f$ at 0 counts for less when $n$ is large since the unit ball has more outside and less inside in higher dimensions.
如何理解?

Related threads

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-23 02:23

$|x|^{-α}∈L^p(𝔹)⇔α<\frac{n}{p}$的证明

用极坐标计算,\begin{aligned}
\int_{B_1(0)}|x|^{-\alpha p} \mathrm{~d} x & =\int_0^1 \int_{\partial B_r(0)}|x|^{-\alpha p} \mathrm{~d} S_x \mathrm{~d} r \\
& =r^{n-1}\omega_{n-1} \int_0^1 r^{-\alpha p} \mathrm{~d} r\\
& =\omega_{n-1} \int_0^1 r^{-\alpha p+n-1} \mathrm{~d} r<\infty⇔n − αp > 0
\end{aligned}其中$\omega_{n-1}=\int_{\partial B_1(0)}\mathrm{d}S_x$.

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-23 02:38

$\abs{x}^α∈\mathrm{W}^{1, p}(𝔹)\iffα<\frac{n}{p}-1\land p ∈[1, n)$

设$u(x)=\abs{x}^\alpha$.
设$\alpha<\frac{n}{p}$,根据2#,$u\in\mathrm L^p_\text{loc}$
Claim: $u \in \mathrm{W}^{1, p}\left(B_1(0)\right)$ precisely for $\alpha<\frac{n}{p}-1$ when $p \in[1, n)$ (and never when $\alpha>0$ and $p \geqslant n$).
计算偏导:$\partial_j u=-\alpha|x|^{-\alpha-2} x_j$ 对每个 $1 \leqslant j \leqslant n$.
若$u∈\mathrm{W}^{1, p}$,则对每个$j$都有$\partial_j u \in \mathrm{L}^p(𝔹)$,这等价于它们的平方平均$\in \mathrm{L}^p(𝔹)$:
\[
\left(\sum_{j=1}^n\left|\partial_j u\right|^2\right)^{\frac{1}{2}}=\alpha|x|^{-\alpha-1} \in \mathrm{L}^p(𝔹)
\]
根据2#(把2#的$\alpha$换成$\alpha+1$)得,$n-(\alpha+1) p>0$.

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-23 02:49
hbghlyj 发表于 2024-3-22 18:16
For \(k > n/p\), the space \(W^{k,p}(\Omega)\) will contain only continuous functions
如何理解?和Sobolev Embedding Theorem有关?

Mobile version|Discuz Math Forum

2025-6-5 19:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit