Forgot password?
 Register account
View 274|Reply 16

[函数] 分式綫性函數$(ax+b)/(cx+d)$,$a,b,c,d\inZ$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-4-5 16:16 |Read mode
設G為分式綫性函數$(ax+b)/(cx+d)$(不為常數,且$a,b,c,d\inZ$)的集合。
則G中兩個函數$f_1,f_2$的複合$f_1\circ f_2$仍在G中。
設H為G的一個有限子集,$x\in H$,且H中兩個函數$f_1,f_2$的複合$f_1\circ f_2$仍在H中。
求|H|

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-4-5 16:30 From mobile phone
|H|这个是啥意思啦?测度?大学的东西全还给老师了…线性分式变换,好像与连分数有一点点关连?
除了不懂,就是装懂

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 16:32
$f=-1/(x-1),f\circ f= (x - 1)/x,f\circ f\circ f= x$
$f=(2x-1)/(x+1),f\circ f=(x - 1)/x, f\circ f\circ f=(x - 2)/(2 x - 1), f\circ f\circ f\circ f\circ f\circ f= x$
$f=(x-1)/(x+ 1),f\circ f=-1/x,f\circ f\circ f\circ f=x$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 16:34
Last edited by hbghlyj 2024-6-5 08:48$$\frac{\frac{2 \left(\frac{2 \left(\frac{2 \left(\frac{2 \left(\frac{2 (2 x-1)}{x+1}-1\right)}{\frac{2 x-1}{x+1}+1}-1\right)}{\frac{\frac{2 (2 x-1)}{x+1}-1}{\frac{2 x-1}{x+1}+1}+1}-1\right)}{\frac{\frac{2 \left(\frac{2 (2 x-1)}{x+1}-1\right)}{\frac{2 x-1}{x+1}+1}-1}{\frac{\frac{2 (2 x-1)}{x+1}-1}{\frac{2 x-1}{x+1}+1}+1}+1}-1\right)}{\frac{\frac{2 \left(\frac{2 \left(\frac{2 (2 x-1)}{x+1}-1\right)}{\frac{2 x-1}{x+1}+1}-1\right)}{\frac{\frac{2 (2 x-1)}{x+1}-1}{\frac{2 x-1}{x+1}+1}+1}-1}{\frac{\frac{2 \left(\frac{2 (2 x-1)}{x+1}-1\right)}{\frac{2 x-1}{x+1}+1}-1}{\frac{\frac{2 (2 x-1)}{x+1}-1}{\frac{2 x-1}{x+1}+1}+1}+1}+1}-1}{\frac{\frac{2 \left(\frac{2 \left(\frac{2 \left(\frac{2 (2 x-1)}{x+1}-1\right)}{\frac{2 x-1}{x+1}+1}-1\right)}{\frac{\frac{2 (2 x-1)}{x+1}-1}{\frac{2 x-1}{x+1}+1}+1}-1\right)}{\frac{\frac{2 \left(\frac{2 (2 x-1)}{x+1}-1\right)}{\frac{2 x-1}{x+1}+1}-1}{\frac{\frac{2 (2 x-1)}{x+1}-1}{\frac{2 x-1}{x+1}+1}+1}+1}-1}{\frac{\frac{2 \left(\frac{2 \left(\frac{2 (2 x-1)}{x+1}-1\right)}{\frac{2 x-1}{x+1}+1}-1\right)}{\frac{\frac{2 (2 x-1)}{x+1}-1}{\frac{2 x-1}{x+1}+1}+1}-1}{\frac{\frac{2 \left(\frac{2 (2 x-1)}{x+1}-1\right)}{\frac{2 x-1}{x+1}+1}-1}{\frac{\frac{2 (2 x-1)}{x+1}-1}{\frac{2 x-1}{x+1}+1}+1}+1}+1}+1}=x$$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 16:43

1,2,3,4,6例子

$H=\{x\},|H|=1$
$f=1/x,H=\{f,f\circ f=x\},|H|=2$
$f=-1/(x-1),H=\{f,f\circ f,x\},|H|=3$
$f=(2x-1)/(x+1),H=\{f,f\circ f, f\circ f\circ f,\dots,x\},|H|=6$
$f=(x-1)/(x+ 1),H=\{f,f\circ f,f\circ f\circ f,x\},|H|=4$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 16:45
計數測度😳

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-4-5 16:46 From mobile phone
元素个数不是习惯用card的吗😂😂😂原谅我幼稚园没毕业的😁
除了不懂,就是装懂

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 16:48
睡神 发表于 2024-4-5 08:30
与连分数有一点点关连? ...
\[
\left\{ x, -\frac{1}{1 - x}, -\frac{1}{\frac{1}{1 - x} + 1}, -\frac{1}{\frac{1}{\frac{1}{1 - x} + 1} + 1} \right\}
\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 16:53
睡神 发表于 2024-4-5 08:46
元素个数不是习惯用card的吗
例如
forum.php?mod=viewthread&tid=11828
用的就是 |•| 啊😳

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 16:59
怎麼證明|H|只能是1,2,3,4,6

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-4-5 17:00 From mobile phone
噢,集合的元素数个数用cardA或|A|表示😂
看到函数,以为是函数测度之类的
除了不懂,就是装懂

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 17:03
睡神 发表于 2024-4-5 09:00
看到函数,以为是函数测度之类的 ...
   计数测度 定义为\(\mu (S)=S\)的“元素个数”。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 17:10
$f=1/(x+1)$
$f\circ f=(x+1)/(x+2)$
$\underbrace{f\circ f\dots\circ f}_n=(F_{n-1}x+F_n)/(F_nx+F_{n+1})$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 17:26

乱猜

hbghlyj 发表于 2024-4-5 08:59
怎麼證明|H|只能是1,2,3,4,6
$\frac12=\frac1n+\frac1m,m\inN$的解?$n=3,4,6$

能平面密鋪的正n邊形只有3,4,6,和這個有關?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 17:41

乱猜

hbghlyj 发表于 2024-4-5 08:59
怎麼證明|H|只能是1,2,3,4,6
EulerPhi(n)=1的解是1,2
EulerPhi(n)=2的解是3,4,6
所以只需證明EulerPhi(|H|)$\le2$

也就是說n次单位根是整系數2次方程的根。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-5 17:52
$n\ge3,a_n=1 + 2 \cos(2\pi/n), $
$f=(a_nx-1)/(x+1)$
則$\underbrace{f\circ f\dots\circ f}_n=x$
(但$a_n$一般不是有理數)

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2024-4-6 11:29
这就是求 $\mathrm{SL}_2(\mathbb Z)$ 有限子群的阶数. 放宽条件: 仅需求得 $\mathrm{SL}_2(\mathbb R)$ 有限子群的阶数. 依照有理标准型, $\mathrm{SL}_2(\mathbb R)$ 的有限子群一定共轭于某个 $\mathrm{SO}_2(\mathbb R)$ 的有限子群, 也就是单位圆周的有限子群. 由于矩阵 $M\in \mathrm{SO}_2(\mathbb R)$ 的迹是整数, 从而 $2\cos \theta$ 是整数. 这表明 $M$ 的可能阶数是 $\{1,2,3,4,6\}$.

另一种做法是注意到 $\frac{\mathrm{SL}_2(\mathbb Z)}{\{\pm I\}}\cong\mathrm{PSL}_2(\mathbb Z)\cong \mathbb Z_2\ast \mathbb Z_3$, 再利用 Kurosh 子群定理, 其有限子群的阶数为 $\{1,2,3\}$. 因此 $\mathrm{SL}_2(\mathbb Z)$ 的有限子群阶数只能是 $\{1,2,3,4,6\}$.

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit