Forgot password
 Register account
View 300|Reply 6

[函数] 高斯函数

[Copy link]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2024-4-9 18:38 |Read mode
1712658573785.jpg D选项怎么证,求解

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-4-9 18:55
Last edited by kuing 2024-4-9 19:09\[\left[\frac{2^k}3\right]=\led
&\frac{2^k-2}3,&&k~\text{为奇数,}\\
&\frac{2^k-1}3,&&k~\text{为偶数}
\endled
\riff
\left[\frac{2^{2k-1}}3\right]+\left[\frac{2^{2k}}3\right]=\frac{2^{2k-1}-2}3+\frac{2^{2k}-1}3=2^{2k-1}-1,\]
得到
\begin{align*}
\left[\frac{2^{6k-5}}3\right]+\left[\frac{2^{6k-4}}3\right]+\cdots+\left[\frac{2^{6k}}3\right]&=2^{6k-5}+2^{6k-3}+2^{6k-1}-3\\
&=21\cdot2^{6k-5}-3,
\end{align*}
即连续六项之和被 `3` 整除,即得证。

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2024-4-10 10:29
kuing 发表于 2024-4-9 18:55
\[\left[\frac{2^k}3\right]=\led
&\frac{2^k-2}3,&&k~\text{为奇数,}\\
&\frac{2^k-1}3,&&k~\text{为偶数 ...
\[\left[\frac{2^k}3\right]=\led
&\frac{2^k-2}3,&&k~\text{为奇数,}\\
&\frac{2^k-1}3,&&k~\text{为偶数 }请教一下这个怎么出来的?谢谢

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-4-10 10:36 from mobile
hjfmhh 发表于 2024-4-9 14:29
\[\left[\frac{2^k}3\right]=\led
&\frac{2^k-2}3,&&k~\text{为奇数,}\\
&\frac{2^k-1}3,&&k~\text{为偶 ...
嘿嘿,这个我知道,2≡-1(mod 3),懒得打代码了
除了不懂,就是装懂

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2024-4-10 10:51
hjfmhh 发表于 2024-4-10 10:29
\[\left[\frac{2^k}3\right]=\led
&\frac{2^k-2}3,&&k~\text{为奇数,}\\
&\frac{2^k-1}3,&&k~\text{为偶 ...
1712717324564.png

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-4-10 10:58
晕。。。直接同余不就出来了?

由$2\equiv -1\pmod{3}$得$2^{2i}\equiv 1\pmod{3},2^{2i-1}\equiv -1\equiv 2\pmod{3}$

$\therefore \lfloor \dfrac{2^{2i}}{3}\rfloor=\dfrac{2^{2i}-1}{3},\lfloor \dfrac{2^{2i-1}}{3}\rfloor=\dfrac{2^{2i-1}-2}{3}$
除了不懂,就是装懂

205

Threads

263

Posts

1

Reputation

Show all posts

original poster hjfmhh posted 2024-4-10 14:20
睡神 发表于 2024-4-10 10:58
晕。。。直接同余不就出来了?

由$2\equiv -1\pmod{3}$得$2^{2i}\equiv 1\pmod{3},2^{2i-1}\equiv -1\eq ...
谢谢

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:18 GMT+8

Powered by Discuz!

Processed in 0.016018 seconds, 28 queries