Forgot password
 Register account
View 164|Reply 2

[几何] 投影三角形的面积

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-9 19:59 |Read mode
边长为$a,b,c$的三角形的面积记为$S(a,b,c)$
math.stackexchange.com/questions/4895861/ 得出:
\begin{aligned}
0&=S(\sqrt{a_1^2+a_2^2+a_3^2},\sqrt{b_1^2+b_2^2+b_3^2},\sqrt{c_1^2+c_2^2+c_3^2})^2\\
&-S(\sqrt{a_1^2+a_2^2},\sqrt{b_1^2+b_2^2},\sqrt{c_1^2+c_2^2})^2\\
&-S(\sqrt{a_1^2+a_3^2},\sqrt{b_1^2+b_3^2},\sqrt{c_1^2+c_3^2})^2\\
&-S(\sqrt{a_2^2+a_3^2},\sqrt{b_2^2+b_3^2},\sqrt{c_2^2+c_3^2})^2\\
&+S(a_1,b_1,c_1)^2\\
&+S(a_2,b_2,c_2)^2\\
&+S(a_3,b_3,c_3)^2\\
\end{aligned}

Comment

能不能解释一下几何意义?😃  posted 2024-4-10 03:00

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-4-10 03:10
青青子衿 发表于 2024-4-9 19:00
能不能解释一下几何意义?
把平面的夹角表示为投影三角形的面积比,想寻找它们的关系
1#在MSE提问了,暂无回復😥

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:20 GMT+8

Powered by Discuz!

Processed in 0.012383 seconds, 23 queries