Forgot password
 Register account
View 288|Reply 2

[几何] Pedoe不等式和Oppenheim不等式等价

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-9 21:34 |Read mode
Geometric Inequalities - Bottema, et. al. (1968)中,对于10.8(Pedoe不等式)和10.12.3(Oppenheim不等式)分别给出了证明。
Screenshot 2024-04-09 143022.png Screenshot 2024-04-09 143110.png

它们都是关于两个三角形的不等式,取等条件都是当两个三角形相似。
用Heron公式展开发现,其实它们是等价的
$$S(a,b,c):=\sqrt{\frac{1}{16} (a+b+c)(-a+b+c)(a-b+c)(a+b-c) }$$
那么10.12.3(Oppenheim不等式)$F_3 \geqslant F_1+F_2$可以写成
$$S\left(\sqrt{a_1^2+a_2^2},\sqrt{b_1^2+b_2^2},\sqrt{c_1^2+c_2^2}\right)\ge S(a_1,b_1,c_1)+S(a_2,b_2,c_2)$$
两边平方,代入S,乘以8,正好得到10.8(Pedoe不等式
$8S\left(\sqrt{a^2+d^2},\sqrt{b^2+e^2},\sqrt{c^2+f^2}\right)^2-8(S(a,b,c)+S(d,e,f))^2$
$=d^2 \left(-a^2+b^2+c^2\right)+e^2 \left(a^2-b^2+c^2\right)+f^2 \left(a^2+b^2-c^2\right)-16 S(a,b,c) S(d,e,f)$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-4-9 22:25
即将刷版,请休息。

Comment

hbghlyj所涉的知识真广,我有他1%的知识面就好  posted 2024-4-10 00:11

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:08 GMT+8

Powered by Discuz!

Processed in 0.013060 seconds, 26 queries