Forgot password?
 Register account
View 323|Reply 7

[数论] $17+\sqrt{-54}$的立方根

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-4-11 21:54 |Read mode
wolframalpha.com/input?i=(17 + Sqrt[-54])^(1/ … t[-3] (Sqrt[2] - 1))
怎么看出$\root3\of{17+\sqrt{-54}}=\frac{1}{2}\left(1+3 \sqrt{2}+\sqrt{-3}(\sqrt{2}-1)\right)$?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-5-31 17:47
$\root3\of{a+\sqrt{-b}}=$
有一般形式吗?

83

Threads

49

Posts

753

Credits

Credits
753

Show all posts

lihpb Posted 2024-6-6 17:49
复平面然后三等分角

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-6-7 01:57
lihpb 发表于 2024-6-6 09:49
复平面然后三等分角
$\tan \left(\frac{1}{3} \tan ^{-1}\left(\frac{\sqrt{54}}{17}\right)\right)=\frac{1}{17}(7 \sqrt{3}-4 \sqrt{6})$ 但如何算出呢

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2024-6-7 10:12
Last edited by hejoseph 2024-6-7 10:35若 $x=\tan\left(\dfrac{1}{3}\arctan a\right)$,则 $x^3-3ax^2-3x+a=0$。令 $a=\dfrac{\sqrt{54}}{17}=\dfrac{3\sqrt{6}}{17}$,那么令 $a=\sqrt{6}y$,则 $x^3-3ax^2-3x+a=0$ 变为 $\dfrac{3\sqrt{6}}{17}(y-1)(34y^2+16y-1)=0$,后面都好求了。

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2024-6-7 13:26
Last edited by Czhang271828 2024-6-7 13:49这个问法其实有问题, 例如 $\sqrt[3]{a+b\sqrt{-1}}$ 到底写成三个根的哪一个? 我暂时用几何意义选择 $\pm |\theta|/3$ 处的角. 例如
$$
\sqrt[3]{e^{\pm \sqrt{-1}\pi/3}}=e^{\pm \sqrt{-1}\pi/9}.
$$
关于 $\sqrt[3]{-1}$ 如何定义, 我也不知道. 反正下面用不着.
--------------------------------------------------
按照以上定义, 似乎常规思路就行了? 分别记共轭复根 $x,y=\sqrt[3]{17\pm 3\sqrt{-6}}$, 那么 $xy=7$, 且
$$
x+y=\frac{x^3+y^3}{(x+y)^2-3xy}=\frac{34}{(x+y)^2-21}.
$$
从而 $(x+y)\in \{-2,1\pm 3\sqrt2\}$. 依照复立方根的几何意义,
$$
x+y>2\cdot \sqrt[3]{17}=\sqrt[3]{136}>5.
$$
从而 $x+y=1+3\sqrt 2$. 结合 $xy=7$, 得
$$
x,y=\frac{1+3\sqrt 2\pm \sqrt{6\sqrt 2-9}}{2}.
$$
此处 $\sqrt{6\sqrt 2-9}=\sqrt{-3}\cdot (\sqrt 2-1)$.
--------------------------------------------------
这个 $\mathbb Q$-上的扩域应该是四次的. 取一组先前计算得到的
$$
xy=7,\quad x+y=-2,
$$
得极小多项式
\begin{align*}
&\quad \,\,(x^6-34x^3+343)\\
&=(x^2+2x+7)(x^2-(1-3\sqrt2)x+7)(x^2-(1+3\sqrt2)x+7)\\
&=(x^2+2x+7)(x^4-2x^3-3x^2-14x+49).
\end{align*}
原题系数之所以配凑得好, 是因为 $343=7^3$, 以及 $\prod (x^2+p_i x+7)=x^6+qx^3+343$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-6-7 21:41
Czhang271828 发表于 2024-6-7 05:26
这个 $\mathbb Q$-上的扩域应该是四次的.
$\root3\of{a+\sqrt{-b}}$,$\mathbb Q$-上的扩域是4次还是6次,有一般的判断方法吗

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-6-7 21:52
cubicquartic.pdf有$\sqrt{a+b \sqrt{d}}$的判断方法:
Corollary 4.7.
$f(X):=X^4-2 a X^2+a^2-d b^2$ is the minimal polynomial of $\sqrt{a+b \sqrt{d}}$ in $K[X]$.

(1) $G_f=V$ if $a^2-d b^2=\square$ in $K$,
(2) $G_f=\mathbf{Z} / 4 \mathbf{Z}$ if $a^2-d b^2 \neq \square$ in $K$ and $d\left(a^2-d b^2\right)=\square$ in $K$,
(3) $G_f=D_4$ if $a^2-d b^2 \neq \square$ in $K$ and $d\left(a^2-d b^2\right) \neq \square$ in $K$,

In the first two cases, the splitting field of $f(X)$ over $K$ is $K(\sqrt{a+b \sqrt{d}})$.

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit