Forgot password?
 Register account
View 244|Reply 1

[数列] 如何确定一个求和式的线性递推式?

[Copy link]

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2024-4-12 14:00 |Read mode
已知\begin{align*}
q_{n}=\sum_{k=0}^{n}\binom{n}{k}(n+k)!
\end{align*}
如何快速确定出$q_n$的线性齐次差分方程?

Ans:
\begin{align*}
(16n-15)q_{n+1}
&=(128n^{3}+40n^{2}-82n-45)q_{n}\\
&\qquad-n^{2}(256n^{3}-240n^{2}+64n-7)q_{n-1}\\
&\qquad\quad\>+n^{2}(n-1)^{2}(16n+1)q_{n-2}
\end{align*}

arxiv.org/pdf/1010.0429.pdf

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-4-12 19:43
Sum[(n + k)! Binomial[n, k], {k, 0, n}]\[
\sum_{k=0}^n(k+n) !\binom nk=\sqrt{\frac{e}{\pi}} n ! K_{n+\frac{1}{2}}\left(\frac{1}{2}\right)
\]

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit