Forgot password
 Register account
View 1814|Reply 4

[函数] 一类无理分式可否化简

[Copy link]

461

Threads

957

Posts

4

Reputation

Show all posts

青青子衿 posted 2024-4-16 15:46 |Read mode

\begin{align*}
\tfrac{(63-18\sqrt{10}-(14-4\sqrt{10})x-(7-2\sqrt{10})x^{2})\sqrt{4-5x+x^{2}}
+
(37-8\sqrt{10}-(26-10\sqrt{10})x+(7-2\sqrt{10})x^{2})\sqrt{13+4x+x^{2}}
}{(11+2\sqrt{10}+(1+\sqrt{10})x)(43-3\sqrt{10}-(74-24\sqrt{10})x+(13-3\sqrt{10})x^{2})}
\end{align*}

上述无理分式分子分母有完全一样的根,是否能够继续化简?
  1. NSolve[(63 -
  2.       18 Sqrt[10] - (14 - 4 Sqrt[10]) x - (7 - 2 Sqrt[10]) x^2) Sqrt[
  3.     4 - 5 x +
  4.      x^2] + (37 -
  5.       8 Sqrt[10] - (26 - 10 Sqrt[10]) x + (7 - 2 Sqrt[10]) x^2) Sqrt[
  6.     13 + 4 x + x^2] == 0, x]
  7. NSolve[(11 + 2 Sqrt[10] + (1 + Sqrt[10]) x) (43 -
  8.      3 Sqrt[10] - (74 - 24 Sqrt[10]) x + (13 - 3 Sqrt[10]) x^2) == 0,
  9.   x]
Copy the Code

Related threads

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-16 19:31
类似于:forum.php?mod=viewthread&tid=12267&extra=page=1
也是无理分式,分子分母有完全一样的根,是否能够继续化简?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-4-16 21:16
经楼主提示,可以化简为
\[\frac{1+x}{(1-\sqrt{10}+x)\sqrt{4-5x+x^2}+(1+\sqrt{10}+x)\sqrt{13+4x+x^2}}\]
😊

461

Threads

957

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2025-5-28 14:42
\begin{align*}
A&=\frac{3+2\sqrt{3}}{3}x-x^{3}-(x^{2}-\frac{\sqrt{3}}{3})((x^{2}-1)(x^{2}-\frac{2\sqrt{3}+3}{3}))^{1/4}\\
&\qquad-x((x^{2}-1)(x^{2}-\frac{2\sqrt{3}+3}{3}))^{1/2}-((x^{2}-1)(x^{2}-\frac{2\sqrt{3}+3}{3}))^{3/4}\\
B&=x-((x^{2}-1)(x^{2}-\frac{2\sqrt{3}+3}{3}))^{1/4}\\
\\

\frac{A}{B}&={}?
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:50 GMT+8

Powered by Discuz!

Processed in 0.014260 seconds, 26 queries