Forgot password?
 Register account
View 308|Reply 4

[数论] 已知正整数$a,b,c$满足$c\mid ab,(a-c)(b-c)<0$,求$\frac{(a-b)^2}{c}$的最小值

[Copy link]

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2024-4-21 16:44 |Read mode
已知正整数$a,b,c$满足$c\mid ab,(a-c)(b-c)<0$,求$\frac{(a-b)^2}{c}$的最小值.

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-4-22 02:36 From mobile phone
Last edited by 睡神 2024-4-22 02:45由对称性,不妨设$b<c<a$

设$(b,c)=d$,不妨令$b=xd,c=yd,y\ge x+1$

由$a>c$且$c\mid ab$得:$a\ge (d+1)y$

则$\dfrac{(a-b)^2}{c}\ge \dfrac{((d+1)y-xd)^2}{yd}=\dfrac{((y-x)d+y)^2}{yd}\ge \dfrac{(d+y)^2}{yd}=\dfrac{d}{y}+\dfrac{y}{d}+2\ge 4$

当且仅当$y=d,y-x=1,a=(d+1)y$时取“$=$”

Comment

感觉这题更偏向于不等式  Posted 2024-4-22 02:43
既有数论也有不等式,题也简洁,挺好的。  Posted 2024-4-22 03:36
除了不懂,就是装懂

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

 Author| Tesla35 Posted 2024-4-28 19:55
睡神 发表于 2024-4-22 02:36
由对称性,不妨设$b<c<a$

设$(b,c)=d$,不妨令$b=xd,c=yd,y\ge x+1$
谢谢

Mobile version|Discuz Math Forum

2025-5-31 11:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit