|
Author |
hbghlyj
Posted 2024-4-22 06:07
$7 = (2-ω)(2-ω^2).$
$2-\omega$ 在 $\Bbb Z[\omega]$ 中不可约,
写出 $\Bbb Z[\omega]$ 模$(2-\omega)\Bbb Z[\omega]$的同余类?$\{\bar 0,\bar1,\dots,\bar6\}\cong F_7$
问题:
- 如何写出 $\Bbb R[\omega]=\Bbb C$ 模$(2-\omega)\Bbb Z[\omega]$的同余类,基本区域包含7个$\Bbb Z[\omega]$的点$0,1,\dots,6$

像上面一样,先写出$\{\overline{(2-\omega)a+(1+3\omega)b}:a,b\in[0,1)\}$,基本区域为一个边长$\sqrt7$的菱形
把$a$换成$a+3b$得$\{\overline{(2-\omega)a+7b}:a,b\in[0,1)\}$,基本区域包含$0,1,\dots,6$,问题解决了
一般情况:
素数$p\equiv1\pmod3$,则存在$n,m\inZ,n>0$使$p=(n+m\omega)(n+m\omega^2)$,
$\omega(n+m\omega)=-m+(n-m)\omega$
像上面一样,先写出$\{(n+m\omega)a+(-m+(n-m)\omega)b:a,b\in[0,1)\}$是$\Bbb C$ 模$(n+m\omega)\Bbb Z[\omega]$的同余类,
$(n-m)(n+m\omega)-m(-m+(n-m)\omega)=n^2-mn+m^2=p\implies p\in(n+m\omega)\Bbb Z+(-m+(n-m)\omega)\Bbb Z$.
$\gcd(n,m)=1\implies\gcd(n-m,m)=1\implies\exists r,s\inZ:(n-m)r+ms=1$
$\implies(n+m\omega)\Bbb Z+(-m+(n-m)\omega)\Bbb Z=(r(n+m\omega)+s(-m+(n-m)\omega))\Bbb Z+p\Bbb Z$
$\{\overline{(r(n+m\omega)+s(-m+(n-m)\omega))a+pb}:a,b\in[0,1)\}$是$\Bbb C$ 模$(n+m\omega)\Bbb Z[\omega]$的同余类,基本区域包含$0,1,\dots,p-1$
把$\omega$换成$i$也一样:
素数$p\equiv1\pmod4$,则存在$n,m\inZ,n>0$使$p=(n+mi)(n+mi)$,
$i(n+mi)=-m+ni$
像上面一样,先写出$\{(n+mi)a+(-m+ni)b:a,b\in[0,1)\}$是$\Bbb C$ 模$(n+mi)\Bbb Z[i ]$的同余类,
$n(n+mi)-m(-m+ni)=n^2+m^2=p\implies p\in(n+mi)\Bbb Z+(-m+ni)\Bbb Z$.
$\gcd(n,m)=1\implies\exists r,s\inZ:(n-m)r+ms=1$
$\implies(n+mi)\Bbb Z+(-m+ni)\Bbb Z=(r(n+mi)+s(-m+ni))\Bbb Z+p\Bbb Z$
$\{\overline{(r(n+mi)+s(-m+ni))a+pb}:a,b\in[0,1)\}$是$\Bbb C$ 模$(n+mi)\Bbb Z[i ]$的同余类,基本区域包含$0,1,\dots,p-1$ |
|