Forgot password
 Register account
View 291|Reply 10

[函数] 周期函数的充要条件

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2024-4-24 16:28 |Read mode
如何证明下面这个:
给定正实数$a_1<a_2<\cdots <a_n$和非零实数$b_1,b_2,\cdots ,b_n$,判断$f(x)=\sum_{k=1}^nb_k\sin(a_kx)$为周期函数的充要条件为$\dfrac{a_k}{a_1}\inQ$,且最小正周期满足$a_kT$均可表为$2b_k\pi(b_k\inN^*)$的最小正数$T$。

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-24 18:03
符号$b_k$重复了吧。前面已经有“非零实数$b_k$”了,这里又定义了“正整数$b_k$”吧。

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-24 18:27

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2024-4-24 19:35
hbghlyj 发表于 2024-4-24 18:03
符号$b_k$重复了吧。前面已经有“非零实数$b_k$”了,这里又定义了“正整数$b_k$”吧。 ...
原文照抄的:
42401.png

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-24 19:36
这是什么资料呢

Comment

网上看到的,不知是什么资料  posted 2024-4-24 21:14

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-24 22:57
lemondian  发表于 2024-4-24 13:14
网上看到的,不知是什么资料
如果有出处,可以问问原作者吧

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2024-4-25 16:34
求$f(x)=|\sin\dfrac{x}{2}+\sin\dfrac{x}{3}+sin\dfrac{x}{4}|$的最小正周期。

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-25 16:39
lemondian 发表于 2024-4-25 08:34
求$f(x)=|\sin\dfrac{x}{2}+\sin\dfrac{x}{3}+\sin\dfrac{x}{4}|$的最小正周期。
$24π$吧。wolframalpha.com/input?i=Period[Abs[Sin[x/2]+Sin[x/3]+Sin[x/4]]]

$\sin\dfrac{x}{2}+\sin\dfrac{x}{3}+\sin\dfrac{x}{4}$的圖象:

Comment

能与1#的东东联系起来不?  posted 2024-4-25 16:43

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-25 16:46
lemondian 发表于 2024-4-25 08:43
能与1#的东东联系起来不?
应该是$4\pi,6\pi,8\pi$的最小公倍数吧。
$4\pi\Bbb Z\cap 6\pi\Bbb Z\cap 8\pi\Bbb Z=24\pi\Bbb Z$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:28 GMT+8

Powered by Discuz!

Processed in 0.018077 seconds, 26 queries