Forgot password?
 Register account
View 332|Reply 3

[几何] 两圆互作切线

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-4-25 04:23 |Read mode

MathWorld写道,可以从\begin{align}
d_1^2+h^2 & =h_1^2 \\
d_2^2+h^2 & =h_2^2 \\
r_1^2+\left(l_1-h_2\right)^2 & =h_1^2 \\
r_2^2+\left(l_2-h_1\right)^2 & =h_2^2 \\
d_1+d_2 & =d \\
r_1^2+l_1^2 & =d^2 \\
r_2^2+l_2^2 & =d^2 \\
s_1 h_1 & =h r_1 \\
s_2 h_2 & =h r_2
\end{align}这九个方程中,消去$ d_1, d_2, h, h_1, h_2, l_1, l_2$,这个怎样办到呢?会得到$s_1,s_2$满足相同的8次方程?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2024-4-26 22:46
啥意思,直接由
\[\frac{s_1}{r_1}=\frac{r_2}d,~\frac{s_2}{r_2}=\frac{r_1}d\]
不就得到
\[s_1=s_2=\frac{r_1r_2}d\]
了吗?

Comment

不知道Mathworld说的8次多项式是什么呢🤔  Posted 2024-4-26 23:30

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-4-26 23:25

Mobile version|Discuz Math Forum

2025-5-31 10:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit