Forgot password?
 Register account
View 161|Reply 0

[函数] 三次方程cos换成sin

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2024-4-25 17:04 |Read mode
若$x^3+bx+c$有三实根,为正三角形的三頂點的x坐标
则$x^3+bx-\sqrt{-\frac{4 b^3}{27}-c^2}$有三实根,为正三角形的三頂點的y坐标

對嗎?

例如$b=-3,c=1$:
$x^3-3x+1=0$的根为$$2 \cos \left(\frac{2\pi }{9}+\frac{2k \pi }{3}\right)\quad,k=0,1,2$$
$x^3-3x+\sqrt3=0$的根为$$2 \sin\left(\frac{2\pi }{9}+\frac{2k \pi }{3}\right)\quad,k=0,1,2$$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:54 GMT+8

Powered by Discuz!

Processed in 0.030222 second(s), 21 queries

× Quick Reply To Top Edit