Forgot password
 Register account
View 149|Reply 1

[数列] 一个绕脑袋的数列问题

[Copy link]

282

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2024-5-7 15:52 |Read mode
正数数列{${a_n}$}的各项互不相等,{${a_n}$},{${\frac{1}{a_n}}$}的前$n$项和分别为$S_n,T_n$,若{${b_n}$}为正整数列,且$b_{n}^2=S_{n}T_{n}$,求证:$b_{27}\geqslant 40$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-5-7 18:20
Last edited by kuing 2024-5-7 18:41由柯西有
\[b_2=\sqrt{(a_1+a_2)\left(\frac1{a_1}+\frac1{a_2}\right)}>2,\]
不能取等是因为 `a_1\ne a_2`,而 `b_i` 为正整数,这样就有 `b_2\geqslant3`。

继续由柯西有
\begin{align*}
b_4&=\sqrt{(a_1+a_2+a_3+a_4)\left(\frac1{a_1}+\frac1{a_2}+\frac1{a_3}+\frac1{a_4}\right)}\\
&>\sqrt{(a_1+a_2)\left(\frac1{a_1}+\frac1{a_2}\right)}+1+1\\
&=b_2+2,
\end{align*}
也是因为 `a_3\ne a_4` 不能取等,所以 `b_4\geqslant b_2+3`。

同样道理,对于 `n\geqslant3`,都有
\begin{align*}
b_n&=\sqrt{(a_1+\cdots+a_{n-2}+a_{n-1}+a_n)\left(\frac1{a_1}+\cdots+\frac1{a_{n-2}}+\frac1{a_{n-1}}+\frac1{a_n}\right)}\\
&>\sqrt{(a_1+\cdots+a_{n-2})\left(\frac1{a_1}+\cdots+\frac1{a_{n-2}}\right)}+1+1\\
&=b_{n-2}+2,
\end{align*}
得到 `b_n\geqslant b_{n-2}+3`,故对于偶数项有 `b_{2k}\geqslant b_2+3(k-1)\geqslant3k`,于是 `b_{26}\geqslant39`,所以 `b_{27}\geqslant40`。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 16:33 GMT+8

Powered by Discuz!

Processed in 0.019966 seconds, 23 queries