Forgot password?
 Register account
View 210|Reply 3

[数论] 5次方程的根按照奇怪的顺序求和

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-5-15 08:15 |Read mode
$x^5-5x^2-3$可以在某个域上分解:
  1. Factor[x^5-5x^2-3,Extension->(125/4 (25+5 Sqrt[5]+Sqrt[750+330 Sqrt[5]]))^(1/5)]
Copy the Code

$e^{k\frac{2\pi i}5}$与$x^5-5x^2-3$的根按照奇怪的顺序乘积求和的5次方,的极小多项式是4次的:
\begin{array}c
k&x^5-5x^2-3\\
1&3\\
2&1\\
3&5\\
4&4\\
5&2
\end{array}
  1. (Exp[3 I 2Pi/5]Root[Function[x,x^5-5x^2-3],1]+Exp[I 2Pi/5]Root[Function[x,x^5-5x^2-3],2]+Exp[5I 2Pi/5]Root[Function[x,x^5-5x^2-3],3]+Exp[4I 2Pi/5]Root[Function[x,x^5-5x^2-3],4]+Exp[2I 2Pi/5]Root[Function[x,x^5-5x^2-3],5])^5//MinimalPolynomial
Copy the Code
-30517578125-244140625 #1+1953125 #1^2-3125 #1^3+#1^4&

如果交换$x^5-5x^2-3$的第2,3和4,5个根,乘积求和的5次方,的极小多项式也是4次的:\begin{array}c
k&x^5-5x^2-3\\
1&3\\
2&5\\
3&1\\
4&2\\
5&4
\end{array}
  1. (Exp[3 I 2Pi/5]Root[Function[x,x^5-5x^2-3],1]+Exp[I 2Pi/5]Root[Function[x,x^5-5x^2-3],2]+Exp[5I 2Pi/5]Root[Function[x,x^5-5x^2-3],3]+Exp[4I 2Pi/5]Root[Function[x,x^5-5x^2-3],4]+Exp[2I 2Pi/5]Root[Function[x,x^5-5x^2-3],5])^5//MinimalPolynomial
Copy the Code
-30517578125-244140625 #1+1953125 #1^2-3125 #1^3+#1^4&

按其它顺序就是更高次的了。只有上面的顺序得到4次最低。
  1. ResourceFunction["StauduharGaloisGroup"][x^5 - 5 x^2 - 3, x]
Copy the Code
StauduharGaloisGroup算出Galois group是$D_5$
???
为什么呢??

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-5-15 08:26
那个四次多项式的根是
  1. Solve[-30517578125-244140625 x+1953125 x^2-3125 x^3+x^4==0,x,Quartics->True]
Copy the Code
\begin{array}{l}
\frac{125}{4} \left(25-5 \sqrt{5}-\sqrt{750-330 \sqrt{5}}\right) \\
\frac{125}{4} \left(25-5 \sqrt{5}+\sqrt{750-330 \sqrt{5}}\right) \\
\frac{125}{4} \left(25+5 \sqrt{5}-\sqrt{750+330 \sqrt{5}}\right) \\
\frac{125}{4} \left(25+5 \sqrt{5}+\sqrt{750+330 \sqrt{5}}\right) \\
\end{array}
  1. ResourceFunction["StauduharGaloisGroup"][-30517578125-244140625 x+1953125 x^2-3125 x^3+x^4, x]
Copy the Code
StauduharGaloisGroup算出Galois group是$S_4$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-5-15 09:06
$\sqrt{\Delta}\inQ$,这与$D_5\subseteq A_5$相符。

通过上面,把四次方程的根的5次根式加进去:
  1. Factor[x^5-5x^2-3,Extension->{Exp[I 2Pi/5],(125/4 (25+5 Sqrt[5]+Sqrt[750+330 Sqrt[5]]))^(1/5)}]
Copy the Code
分解成了一次因式。

这说明$x^5-5x^2-3$的根都在$\Bbb Q\left[\exp \left(\frac{i 2 \pi }{5}\right),\sqrt[5]{25+\frac{125}{4} \left(5 \sqrt{5}+\sqrt{750+330 \sqrt{5}}\right)}\right]$中。
这个域很大。
能不能找到$x^5-5x^2-3$的分裂域?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-5-15 09:25
Last edited by hbghlyj 2024-5-15 09:33发到MSE问问:math.stackexchange.com/questions/4916701/subg … is-group-of-x5-5x2-3

  1. MinimalPolynomial[Total[r1^2r2/.Table[Thread[{r1,r2,r3,r4,r5}->RotateRight[Table[Root[#^5-5#^2-3&,i],{i,{1,2,4,5,3}}],n]],{n,5}]],x]
Copy the Code
$x^2+5 x+100$

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit