Forgot password?
 Register account
View 372|Reply 3

[几何] Geodesic Coordinates

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-5-17 23:06 |Read mode
Last edited by hbghlyj 2024-5-19 15:19Coordinate systems for the hyperbolic plane: Polar coordinate system

上半平面的坐标$(x,y)$,其中$x\inR,y\inR^+$
$(x,y)$转换为极坐标:$\cases{x=e^v \tanh u\\ y=e^v \operatorname{sech} u}$
反过来,极坐标转换为$(x,y)$:$\cases{u=\sinh^{-1} \frac{x}{y}\\ v=\log\sqrt{x^2+y^2}}$
所以$u,v$的范围是$u,v\inR$

这其实不仅限于“双曲平面”。取2组正交的geodesic用弧长为坐标,见Geodesic Polar Coordinates
page 77
5 Geodesic Coordinates
Screenshot 2024-05-19 161718.png
验证:
$d u^2+\cosh ^2 u d v^2$ 作代换 $x=e^v \tanh u, y=e^v \operatorname{sech} u$
得到Poincaré metric $\left(d x^2+d y^2\right) / y^2$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-5-17 23:09
hbghlyj 发表于 2024-5-17 15:06
$d u^2+\cosh ^2 u d v^2$ 作代换 $x=e^v \tanh u, y=e^v \operatorname{sech} u$
得到Poincaré metric $\left(d x^2+d y^2\right) / y^2$.
計算有些繁瑣,用WolframAlpha:
Simplify (Dt[ e^v tanh u]^2 + Dt[e^v sech u]^2)/(e^v sech u)^2
download.gif

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-5-17 23:16
hbghlyj 发表于 2024-5-17 15:09
$d u^2+\cosh ^2 u d v^2$ 作代换 $x=e^v \tanh u, y=e^v \operatorname{sech} u$
得到Poincaré metric $\left(d x^2+d y^2\right) / y^2$.
反过来算,更加繁琐:将$\cases{u=\sinh^{-1} \frac{x}{y}\\ v=\log\sqrt{x^2+y^2}}$代入$d u^2+\cosh ^2 u d v^2$
用WolframAlpha:
Simplify Dt[ArcSinh[x/y]]^2+(1+(x/y)^2)Dt[Log[x^2+y^2]/2]^2
download.gif

这个要是手算就需要很长时间

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-5-17 23:21
还有一种坐标:horocyclic coordinates
Wikipedia: Horocycle-based coordinate system
330px-Horocycle-based_coordinate_system.svg[1].png
the metric tensor is $d\rho^2 + e^{2\rho} dt^2$
https://math.stackexchange.com/q ... urface?noredirect=1
7vSTn[1].png

Mobile version|Discuz Math Forum

2025-5-31 11:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit