Forgot password?
 Create new account
View 95|Reply 0

二次超曲面与超平面相交条件

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2024-5-24 17:38:43 |Read mode
Last edited by 青青子衿 at 2024-5-25 04:33:00给定互不相等的$n$维常向量$\boldsymbol{\alpha}$,$\boldsymbol{\beta}$,$\boldsymbol{\gamma}$,超平面方程$\langle\boldsymbol{\gamma}-\boldsymbol{\beta},\boldsymbol{x}-\boldsymbol{\beta}\rangle=0$与旋转抛物超曲面方程$\left\Vert\boldsymbol{\alpha}-\boldsymbol{\beta}\right\Vert^{2}\big\Vert\boldsymbol{x}-\boldsymbol{\alpha}\big\Vert^{2}=\langle\boldsymbol{\alpha}-\boldsymbol{\beta},\boldsymbol{x}-\boldsymbol{\beta}\rangle^2$,那么它们相交的条件是什么?

将一个二次超曲面和同维数超平面齐次化,将超平面的常数项对应的射影元用先前的变元线性表示.
将该射影元代换到齐次化后的超曲面中,如果两者没有交点,
能不能用二次型正定和负定的方法说明变换后的二次超曲面没有交点?

\begin{align*}
\langle\boldsymbol{\gamma}-\boldsymbol{\beta},\boldsymbol{x}-\boldsymbol{\beta}\rangle&=0\\
\\
\left\Vert\boldsymbol{\alpha}-\boldsymbol{\beta}\right\Vert^{2}\big\Vert\boldsymbol{x}-\boldsymbol{\alpha}\big\Vert^{2}&=\langle\boldsymbol{\alpha}-\boldsymbol{\beta},\boldsymbol{x}-\boldsymbol{\beta}\rangle^2\\
\\
\end{align*}


Working in homogeneous coordinates, if a quadric surface has the equation $\mathbf x^TQ\mathbf x=0$, then its tangent hyperplanes $\mathbf\pi$ satisfy the dual equation $\mathbf\pi^TQ^*\mathbf\pi=0$. For a nondegenerate quadric such as yours, the dual conic matrix $Q^*$ can be taken to be $Q^{-1}$.

想获取二次型的系数矩阵可以用增广海森矩阵获取

手机版Mobile version|Leisure Math Forum

2025-4-20 22:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list