Forgot password
 Register account
View 291|Reply 7

[几何] 以单位圆内接正方形的顶点A到P(2,0)的距离AP为边作等边三角形APQ,求OQ的最小值

[Copy link]

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2024-5-25 23:10 |Read mode
QQ截图20230923002632.jpg

Comment

这才几个字,文字版一下啦  posted 2024-5-25 23:41
其妙大师再现江湖  posted 2024-5-25 23:59
妙不可言,不明其妙,不着一字,各释其妙!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-5-25 23:58
等价于 ABCD 固定在坐标轴上,P 在半径为 2 的圆上动,如下图:
QQ截图20240525235310.png
作正△AOE,则易知那两个颜色的三角形全等,所以 QE=2,即 Q 的轨迹为圆,于是 OQ∈[1,3];

第二问(其实反过来动主要是为了这一问,仅第一问并不需要):
设 `P(2\cos t,2\sin t)`,则
\[Q\left(\frac{\sqrt3}2+2\cos(60\du+t),\frac12+2\sin(60\du+t)\right),\]
所以
\begin{align*}
x+y&=\frac{\sqrt3}2+2\cos(60\du+t)-2\cos t+\frac12+2\sin(60\du+t)-2\sin t\\
&=\frac{\sqrt3+1}2-2\sin(30\du+t)+2\cos(30\du+t)\\
&\in\left[\frac{\sqrt3+1}2-2\sqrt2,\frac{\sqrt3+1}2+2\sqrt2\right].
\end{align*}

Comment

太强了  posted 2024-5-28 21:46

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2024-5-26 00:02
(1)将三角形 QAO 绕点  Q 逆时针旋转 $60^\circ$ 点 A 与点 P 重合,点 O 落到点 $O'$ 处,即得到 $\triangle QPO'$ .
连接 $OO'$,则有\[OQ=OO'\geqslant OP-PO'=1.\]
当且仅当点 $O'$ 落在线段 OP 上时取得等号.

Comment

厉害了  posted 2024-5-28 21:47
isee=freeMaths@知乎

84

Threads

2340

Posts

4

Reputation

Show all posts

original poster 其妙 posted 2024-5-31 18:25
有没有等和线啊啥的做法
妙不可言,不明其妙,不着一字,各释其妙!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:13 GMT+8

Powered by Discuz!

Processed in 0.018808 seconds, 35 queries