Forgot password?
 Register account
View 232|Reply 1

[几何] 证明:$ ae+cg=bf+dh $

[Copy link]

18

Threads

5

Posts

149

Credits

Credits
149

Show all posts

Zach Posted 2024-5-27 13:31 |Read mode
如图,两单位正方形重迭出八边形$ABCDEFGH$,

边长$HA,AB,BC,CD,DE,EF,FG,GH$ 依序为$a,b,c,d,e,f,g,h$

证明:$ ae+cg=bf+dh $
ae cg=bf dh.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2024-5-27 16:45
易证 `a+e=c+g=b+f=d+h`,则有
\[(a+e)^2+(c+g)^2=(b+f)^2+(d+h)^2,\]
于是要证明 `ae+cg=bf+dh`,就只需证明
\[a^2+e^2+c^2+g^2=b^2+f^2+d^2+h^2,\]
又显然八个小直角三角形均相似,则它们的斜边平方之比 = 面积之比,因此上式等价于两个正方形不重叠的部分面积之和相等,这是显然的,即得证。

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit