Forgot password
 Register account
View 152|Reply 2

[几何] 锐角三角形,中线与底边的比值范围

[Copy link]

18

Threads

5

Posts

0

Reputation

Show all posts

Zach posted 2024-5-29 12:31 |Read mode
$  锐角三角形ABC,BC中点为M,令k=\dfrac{AM}{BC},$
$求k的范围$
最大值是无穷大,最小值呢?$

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2024-5-29 13:15
p0202.png
如图
对于给定的$BC$而言,作以$BC$为直径的圆$M$,那么对于一个锐角三角形,$A$必须要在那两条垂线之间,且位于圆外

这就很显然会有$AM>A'M=\frac{BC}{2}$,另一头的极限当然就是$\frac{1}{2}$

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2024-5-31 18:21
\begin{aligned}
&\text{因为}\cos A>0\Rightarrow b^{2}+c^{2}>a^{2} , \\
&\text{故} (\frac{AM}{BC})^{2}=\frac{\frac{1}{2}(b^{2}+c^{2})-\frac{1}{4}a^{2}}{a^{2}}>\frac{\frac{1}{2}a^{2}-\frac{1}{4}a^{2}}{a^{2}}=\frac{1}{4} , \\
&\text{故}\frac{AM}{BC}>\frac{1}{2}
\end{aligned}
妙不可言,不明其妙,不着一字,各释其妙!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-16 15:58 GMT+8

Powered by Discuz!

Processed in 0.013982 seconds, 29 queries