Forgot password
 Register account
View 172|Reply 4

[不等式] 复数$z_1,z_2,z_3$, $|z_1z_2z_3|$的不等式

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-6-3 16:31 |Read mode
Last edited by hbghlyj 2024-7-17 12:11$z_1,z_2,z_3\inC$
$(z_1-z_2)^2+(z_2-z_3)^2+(z_3-z_1)^2=0$,则$$|z_1z_2z_3|\ge\abs{\frac{z_1+z_2+z_3}3}^3-\abs{\frac{z_1-z_2}{\sqrt3}}^3$$

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2024-6-3 17:51
提示: 对条件移项, 得
$$
(z_1-z_2)^2+(z_1-z_2)(z_2-z_3)+(z_2-z_3)^2=0.
$$
从而 $z_2$ 处的拐角 $\frac{z_1-z_2}{z_2-z_3}$ 是 $\pi/3$. 三角形等边.

4

Threads

137

Posts

12

Reputation

Show all posts

Aluminiumor posted 2024-7-17 10:56
考虑 $z_1=z_2=z_3\neq0$ ,不等式应该不成立?

Comment

謝謝,我錯了😣,已改  posted 2024-7-17 20:02
Wir müssen wissen, wir werden wissen.

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-7-17 20:05
懂了。令$z_1=z+1,z_2=z+e^{2\pi i/3},z_3=z+e^{4\pi i/3}$,变成$|z^3+1|\ge|z|^3-1$,三角不等式。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:06 GMT+8

Powered by Discuz!

Processed in 0.023442 seconds, 26 queries