Forgot password?
 Register account
View 250|Reply 4

[不等式] 复数$z_1,z_2,z_3$, $|z_1z_2z_3|$的不等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-6-3 16:31 |Read mode
Last edited by hbghlyj 2024-7-17 12:11$z_1,z_2,z_3\inC$
$(z_1-z_2)^2+(z_2-z_3)^2+(z_3-z_1)^2=0$,则$$|z_1z_2z_3|\ge\abs{\frac{z_1+z_2+z_3}3}^3-\abs{\frac{z_1-z_2}{\sqrt3}}^3$$

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2024-6-3 17:51
提示: 对条件移项, 得
$$
(z_1-z_2)^2+(z_1-z_2)(z_2-z_3)+(z_2-z_3)^2=0.
$$
从而 $z_2$ 处的拐角 $\frac{z_1-z_2}{z_2-z_3}$ 是 $\pi/3$. 三角形等边.

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-7-17 10:56
考虑 $z_1=z_2=z_3\neq0$ ,不等式应该不成立?

Comment

謝謝,我錯了😣,已改  Posted 2024-7-17 20:02
Wir müssen wissen, wir werden wissen.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-7-17 20:05
懂了。令$z_1=z+1,z_2=z+e^{2\pi i/3},z_3=z+e^{4\pi i/3}$,变成$|z^3+1|\ge|z|^3-1$,三角不等式。

Mobile version|Discuz Math Forum

2025-5-31 10:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit