Forgot password
 Register account
View 181|Reply 7

[不等式] 一个三角相关的不等式

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2024-6-5 22:16 |Read mode
设$\alpha ,\beta ,\gamma \in(0,\dfrac{\pi}{2})$,满足$\sin^2\alpha +\sin^2\beta+\\sin^2\gamma =1$ ,求使得$\sum\sin\alpha \sqrt{\sin^2\beta +\sin^2\gamma }\leqslant \dfrac{\sqrt{2}}{2}+\lambda (\sin\alpha +\sin\beta +\sin\gamma )$最小的实数$\lambda $。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-6-5 22:21
这根三角有个鸟关系?
用 a,b,c 来代替不是完全一样吗?三角根本多余啊

4

Threads

28

Posts

6

Reputation

Show all posts

ic_Mivoya posted 2024-6-6 00:10
考察 $\sin^2\alpha=\sin^2\beta=\sin^2\gamma=\dfrac13$ 的情形,得到 $\lambda\geqslant\dfrac{\sqrt6}6.$

又易证局部不等式 $\sin\alpha\cos\alpha\leqslant \dfrac{\sqrt2}6+\dfrac{\sqrt6}6\sin \alpha,$ 轮换求和即得 $\lambda=\dfrac{\sqrt6}6$ 时原不等式成立.

因此 $\lambda_{\min}=\dfrac{\sqrt6}6.$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-6-6 13:48
琴生都行,这题也太弱。

等价于 `a`, `b`, `c>0`, `a+b+c=1` 求最小 `\lambda` 使
\[\sum\sqrt{a(1-a)}\leqslant\frac{\sqrt2}2+\lambda\sum\sqrt a,\]
取 `a=b=c=1/3` 知 `\lambda\geqslant\sqrt6/6`,而当 `\lambda=\sqrt6/6` 时设 `f(x)=\sqrt{x(1-x)}-\lambda\sqrt x`,求二阶导
\[f''(x)=-\frac1{4\sqrt{x^3(1-x)^3}}+\frac\lambda{4\sqrt{x^3}}<-\frac1{4\sqrt{x^3}}+\frac\lambda{4\sqrt{x^3}}<0,\]
所以 `f(a)+f(b)+f(c)\leqslant3f(1/3)=\sqrt2/2`,即当 `\lambda=\sqrt6/6` 时不等式成立。

422

Threads

911

Posts

0

Reputation

Show all posts

original poster lemondian posted 2024-6-6 20:04
ic_Mivoya 发表于 2024-6-6 00:10
考察 $\sin^2\alpha=\sin^2\beta=\sin^2\gamma=\dfrac13$ 的情形,得到 $\lambda\geqslant\dfrac{\sqrt6}6. ...
@ic_Mivoya:
如何证这个局部不等式$\sin\alpha\cos\alpha\leqslant \dfrac{\sqrt2}6+\dfrac{\sqrt6}6\sin \alpha$?

4

Threads

28

Posts

6

Reputation

Show all posts

ic_Mivoya posted 2024-6-6 20:20
lemondian 发表于 2024-6-6 20:04
@ic_Mivoya:
如何证这个局部不等式$\sin\alpha\cos\alpha\leqslant \dfrac{\sqrt2}6+\dfrac{\sqrt6}6\si ...
求导即可

Comment

咋搞不出来呢?😅  posted 2024-6-6 20:52
极值点满足 $\cos^2\alpha=\dfrac23,$ 不妨再搞搞  posted 2024-6-6 21:23

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:53 GMT+8

Powered by Discuz!

Processed in 0.022049 seconds, 23 queries