Forgot password?
 Register account
View 130|Reply 1

[不等式] Hardy's inequality

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2024-6-8 17:48 |Read mode
若$a_{1},a_{2},\dots,a_N\ge0,\;p>1$,则
$$\sum _{n=1}^N\left({\frac {a_{1}+a_{2}+\cdots +a_{n}}{n}}\right)^{p}\leq \left({\frac {p}{p-1}}\right)^{p}\sum _{n=1}^Na_{n}^{p}.$$
证明:见Wikipedia.$\quad\Box$

令$N\to\infty$得到:
若$a_{1},a_{2},\dots\ge0,\;p>1$,则
$$\sum _{n=1}^{\infty }\left({\frac {a_{1}+a_{2}+\cdots +a_{n}}{n}}\right)^{p}\leq \left({\frac {p}{p-1}}\right)^{p}\sum _{n=1}^{\infty }a_{n}^{p}.$$
应用

Comment

收藏一个  posted 2024-6-11 08:37

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:59 GMT+8

Powered by Discuz!

Processed in 0.017355 second(s), 25 queries

× Quick Reply To Top Edit